Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery

  • Chapter
  • First Online:
Good Practice in Archaeological Diagnostics

Abstract

Archaeologists using airborne data can encounter a large variety of frame images in the course of their work. These range from vertical aerial photographs acquired with very expensive calibrated optics to oblique images from hand-held, uncalibrated cameras and even photographs shot with compact cameras from an array of unmanned airborne solutions. Additionally, imagery can be recorded in one or more spectral bands of the complete optical electromagnetic spectrum. However, these aerial images are rather useless from an archaeological standpoint as long as they are not interpreted in detail. Furthermore, the relevant archaeological information interpreted from these images has to be mapped and compared with information from other sources. To this end, the imagery must be accurately georeferenced, and the many geometrical distortions induced by the optics, the terrain and the camera tilt should be corrected. This chapter focuses on several types of archaeological airborne frame imagery, the distortion factors that are influencing these two-dimensional still images and the necessary steps to compute orthophotographs from them. Rather than detailing the conventional photogrammetric orthorectification workflows, this chapter mainly centres on the use of computer vision-based solutions such as structure from motion (SfM) and dense multi-view stereo (MVS). In addition to a theoretical underpinning of the working principles and algorithmic steps included in both SfM and MVS, real-world imagery originating from traditional and more advanced airborne imaging platforms will be used to illustrate the possibilities of such a computer vision-based approach: the variety of imagery that can be dealt with, how (accurately) these images can be transformed into map-like orthophotographs and how these results can aid in the documentation of archaeological resources at a variety of spatial scales. Moreover, the case studies detailed in this chapter will also prove that this approach might move beyond current restrictions of conventional photogrammetry due to its applicability to datasets that were previously thought to be unsuitable for convenient georeferencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aber JS, Aber SW, Leffler B (2001) Challenge of infrared kite aerial photography. Trans Kansas Acad Sci 104:18–27. doi:10.1660/0022-8443(2001)104[0018:COIKAP]2.0.CO;2

    Google Scholar 

  • Agisoft LLC (2012) Agisoft PhotoScan user manual. Professional edition, version 0.9.0. http://downloads.agisoft.ru/pdf/photoscan-pro_0_9_0_en.pdf. Accessed 13 Feb 2013

  • Altenhofen RE, Hedden RT (1966) Transformation and rectification. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 803–849

    Google Scholar 

  • Álvarez P, Antonio J, Herrera VM, Martínez del Pozo JÁ, de Tena MT (2013) Multi-temporal archaeological analyses of alluvial landscapes using the photogrammetric restitution of historical flights: a case study of Medellin (Badajoz, Spain). J Archaeol Sci 40:349–364. doi:10.1016/j.jas.2012.08.025

    Google Scholar 

  • American Society for Photogrammetry and Remote Sensing, Specifications and Standards Committee (1990) ASPRS accuracy standards for large-scale maps. Photogramm Eng Remote Sens 56:1068–1070

    Google Scholar 

  • Appetecchia A, Brandt O, Menander H, Thorén H (2012) New methods for documentation and analysis in building archaeology: prestudy. a project funded by the Swedish National Heritage Board, R & D funds, Lund. http://www.arkeologiuv.se/cms/showdocument/documents/extern_webbplats/arkeologiuv/publikationer_uv/rapporter/uv_rapport/2012/uvr2012_001.pdf. Accessed 4 Feb 2013

  • Barazzetti L, Remondino F, Scaioni M (2011) Automated and accurate orientation of complex image sequences. In: 3D-ARCH 2011: 3D virtual reconstruction and visualization of complex architectures, Proceedings of the 4th ISPRS international workshop, Trento, Italy, 2–4 Mar 2011. ISPRS

    Google Scholar 

  • Barber M (2011) A history of aerial photography and archaeology. Mata Hari’s glass eye and other stories. English Heritage, Swindon

    Google Scholar 

  • Bay H, Tuytelaars T, Gool L (2006) SURF: speeded up robust features. In: Aleš L, Horst B, Axel P (eds) Computer vision, 9th European conference on computer vision (ECCV 2006, Graz, Austria, May 7–13, 2006), Proceedings, part I, vol 3951, Lecture notes in computer science. Springer, Berlin, pp 404–417

    Google Scholar 

  • Bay H, Ess A, Tuytelaars T, van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110:346–359

    Google Scholar 

  • Bernstein R (1983) Image geometry and rectification. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 873–922

    Google Scholar 

  • Bewley R, Rączkowski W (eds) (2002) Aerial archaeology. Develo** future practice, vol 337, NATO science series I: life and behavioural sciences. IOS Press, Amsterdam

    Google Scholar 

  • Bezzi L (2012) 3D documentation of small archaeological finds. http://arc-team-open-research.blogspot.com.br/2012/08/3d-documentation-of-small.html. Accessed 11 October 2012

  • Billingsley FC (1965) Digital video processing at JPL. In: Electronic Imaging Techniques I, vol 15. SPIE, Bellingham

    Google Scholar 

  • Billingsley FC, Anuta PE, Carr JL, McGillem CD, Smith DM, Strand TC (1983) Data processing and reprocessing. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 719–792

    Google Scholar 

  • Bradley D, Boubekeur T, Heidrich W (2008) Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In: CVPR 2008. IEEE conference on computer vision and pattern recognition, 23–28 June 2008. IEEE, Anchorage, pp 1–8. doi:10.1109/CVPR.2008.4587792

  • Braun J (2003) Aspects on true-orthophoto production. In: Fritsch D (ed) Photogrammetric week ‘03. Wichmann Verlag, Heidelberg, pp 205–214

    Google Scholar 

  • Brophy K, Cowley D (eds) (2005) From the air. Understanding aerial archaeology. Tempus, Stroud

    Google Scholar 

  • Brown DC (1966) Decentering distortion of lenses: the prism effect encountered in metric cameras can be overcome through analytic calibration. Photogramm Eng Remote Sens 32:444–462

    Google Scholar 

  • Brown DC (1956) The simultaneous determination of the orientation and lens distortion of a photogrammetric camera. Air Force Missile Test Center Technical Report 56–20. Florida

    Google Scholar 

  • Brugioni DA (1989) The serendipity effect of aerial reconnaissance. Interdiscip Sci Rev 14:16–28. doi:10.1179/030801889789798357

    Google Scholar 

  • Buchanan T (1993) Photogrammetry and projective geometry: an historical survey. In: Integrating photogrammetric techniques with scene analysis and machine vision, Orlando, FL, USA, 11 Apr 1993. SPIE, Bellingham, pp 82–91. doi:10.1117/12.155817

    Google Scholar 

  • Burnside CD (1985) Map** from aerial photographs, 2nd edn. Collins, London

    Google Scholar 

  • Castrianni L (2008) Giacomo Boni: a pioneer of the archaeological aerial photography. In: Remote sensing for archaeology and cultural heritage management: proceedings of the 1st international EARSeL workshop, CNR, Rome, Arracne, Rome, September 30–October 4, 2008, pp 55–58

    Google Scholar 

  • Coleman S (2007) Taking advantage: vertical aerial photographs commissioned for local authorities. In: Mills J, Palmer R (eds) Populating clay landscapes. Tempus, Stroud, pp 28–33

    Google Scholar 

  • Colwell RN (1997) History and place of photographic interpretation. In: Philipson WR (ed) Manual of photographic interpretation, 2nd edn. American Society of Photogrammetry and Remote Sensing, Bethesda, pp 3–47

    Google Scholar 

  • Cowley DC, Stichelbaut BB (2012) Historic aerial photographic archives for European archaeology. Eur J Archaeol 15:217–236. doi:10.1179/1461957112Y.0000000010

    Google Scholar 

  • Cowley D, Standring RA, Abicht MJ (eds) (2010) Landscapes through the lens. Aerial photographs and historic environment, vol 2, Occasional publication of the Aerial Archaeology Research Group. Oxbow Books, Oxford/Oakville

    Google Scholar 

  • Cowley DC, Ferguson LM, Allan W (2013) The aerial reconnaissance archives: a global aerial photographic collection. In: Hanson WS, Oltean IA (eds) Archaeology from historical aerial and satellite archives. Springer, New York, pp 13–30

    Google Scholar 

  • Crawford OGS (1924) Air survey and archaeology, vol 7, Ordnance survey professional papers, New series. Ordnance Survey, Southampton

    Google Scholar 

  • Crawford OGS (1929) Air photographs of the Middle East: a paper read at the evening meeting of the Society on 18 March 1929. Geogr J 73:497–509

    Google Scholar 

  • Crawford OGS (1933) Some recent air discoveries. Antiquity 7:290–296

    Google Scholar 

  • Crawford OGS, Keiller A (1928) Wessex from the air. Oxford University Press, Oxford

    Google Scholar 

  • Crawshaw A (1995) Oblique aerial photography: aircraft, cameras and films. In: Kunow J (ed) Luftbildarchäologie in Ost- und Mitteleuropa/Aerial archaeoloy in Eastern and Central Europe: internationales symposium, Kleinmachnow, Land Brandenburg, 26–30, September 1994, vol 3, Forschungen zur Archäologie im Land Brandenburg. Verlag Brandenburgisches Landesmuseum für Ur- und Frühgeschichte, Potsdam, pp 67–76

    Google Scholar 

  • Crawshaw A (1997) Letter. AARGnews 14:59

    Google Scholar 

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, San Diego, CA, USA, 20–25 June 2005. IEEE Computer Society, Los Alamitos, pp 886–893. doi:10.1109/CVPR.2005.177

  • Deng H, Wei Zhang, Mortensen E, Dietterich T, Shapiro L (2007) Principal curvature-based region detector for object recognition. In: Proceedings of the 2007 IEEE conference on computer vision and pattern recognition CVPR ‘07, Minneapolis, MN, USA, 18–23 June. IEEE, Piscataway, pp 1–8. doi:10.1109/CVPR.2007.382972

  • Dickinson GC (1969) Maps and air photographs. Edward Arnold, London

    Google Scholar 

  • Doneus M (1997) On the archaeological use of vertical photographs. AARGnews 15:23–27

    Google Scholar 

  • Doneus M (2000) Vertical and oblique photographs. AARGnews 20:33–39

    Google Scholar 

  • Doneus M, Eder-Hinterleitner A, Neubauer W (2001) Archaeological prospection in Austria. In: Archaeological prospection: fourth international conference on archaeological prospection, Vienna, 19–23 Sept 2001. Austrian Academy of Sciences, Vienna, pp 11–33

    Google Scholar 

  • Doneus M, Briese C, Fera M, Fornwagner U, Griebl M, Janner M, Zingerle M-C (2007) Documentation and analysis of archaeological sites using aerial reconnaissance and airborne laser scanning. In: Anticipating the future of the cultural past: proceedings of the XXI international CIPA symposium, Athens, Greece, 1–6 Oct 2007, The ISPRS international archives of the photogrammetry, remote sensing and spatial information sciences. CIPA, Athens, vol XXXVI-5/C53, pp 275–280. ISSN 1682–1750

    Google Scholar 

  • Doneus M, Verhoeven G, Fera M, Briese C, Kucera M, Neubauer W (2011) From deposit to point cloud: a study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. In: Geoinformatics 6, XXIIIrd international CIPA Symposium, pp 81–88

    Google Scholar 

  • Eisenbeiss H (2009) UAV photogrammetry. PhD thesis, ETH Zürich, Zürich. http://e-collection.library.ethz.ch/eserv/eth:498/eth-498-02.pdf#search=%22%28author:henri%20eisenbeiss%29%22. Accessed 11 Feb 2013

  • Eisenbeiss H, Sauerbier M (2011) Investigation of UAV systems and flight modes for photogrammetric applications. Photogramm Rec 26:400–421. doi:10.1111/j.1477-9730.2011.00657.x

    Google Scholar 

  • Eisenbeiss H, Sauerbier M, Zhang L, Grün A (2005) Mit dem Modellhelikopter über Pinchango Alto. Geomat Schweiz 9:510–515

    Google Scholar 

  • El-Hakim, SF, Beraldin J-A, Picard M (2003) Effective 3D modeling of heritage sites. In: Proceedings of the 4th international conference 3-D digital imaging and modeling, Banff, Canada, 6–10 October. IEEE Computer Society Press, Los Alamitos, pp 302–309

    Google Scholar 

  • Estes JE, Hajic EJ, Tinney LR, Carver LG, Cosentino MJ, Mertz FC, Pazner MI, Ritter LR, Sailer CT, Stow DA, Streich TA, Woodcock CE (1983) Fundamentals of image analysis: analysis of visible and thermal infrared data. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 987–1124

    Google Scholar 

  • Falkner E, Morgan D (2002) Aerial map**. Methods and applications, 2nd edn, Map** sciences series. Lewis, Boca Raton

    Google Scholar 

  • Faugeras O, Luong Q-T, Papadopoulo T (2001) The geometry of multiple images. The laws that govern the formation of multiple images of a scene and some of their applications. MIT Press, Cambridge

    Google Scholar 

  • Federal Geographic Data Committee – Subcommittee for Base Cartographic Data (1998) Geospatial positioning accuracy standards. Part 3: National Standard for Spatial Data Accuracy (FGDC-STD-007.3-1998). Federal Geographic Data Committee, Reston

    Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24:381–395. doi:10.1145/358669.358692

    Google Scholar 

  • Fisher RB, Dawson-Howe K, Fitzgibbon A, Robertson C, Trucco E (2005) Dictionary of computer vision and image processing. Wiley, Chichester

    Google Scholar 

  • Forte M, Dell’unto N, Issavi J, Onsurez L, Lercari N (2012) 3D archaeology at Çatalhöyük. Int J Herit Digit Era 1:352–378. doi:10.1260/2047-4970.1.3.351

    Google Scholar 

  • Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32:1362–1376. doi:10.1109/TPAMI.2009.161

    Google Scholar 

  • Goesele M, Curless B, Seitz SM (2006) Multi-view stereo revisited. In: Proceedings of the 2006 IEEE Computer Society conference on computer vision and pattern recognition CVPR’06. IEEE Computer Society Press, Los Alamitos, 17–22 June 2006, vol. 2, pp 2402–2409. doi:10.1109/CVPR.2006.199.

  • Graham R, Koh A (2002) Digital aerial survey. Theory and practice. CRC Press/Whittles Publishing, Boca Raton

    Google Scholar 

  • Gruner H, Pestrecov K, Norton CL, Tayman WP, Washer FE (1966) Elements of photogrammetric optics. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 67–132

    Google Scholar 

  • Gyer MS (1996) Methods for computing photogrammetric refraction corrections for vertical and oblique photographs. Photogramm Eng Remote Sens 62:301–310

    Google Scholar 

  • Habbecke M, Kobbelt L (2006) Iterative multi-view plane fitting. In: Kobbelt L, Kuhlen T, Aach T, Westerman R (eds) Proceedings of the 11th international fall workshop vision, modeling, and visualization 2006, Aachen, Germany, 22–24 Nov 2006. Akademische Verlagsgesellschaft Aka GmbH, Berlin, pp 73–80

    Google Scholar 

  • Hallert B (1960) Photogrammetry. Basic principles and general survey, McGraw-Hill civil engineering series. McGraw-Hill, New York

    Google Scholar 

  • Hanson WS, Oltean IA (eds) (2013) Archaeology from historical aerial and satellite archives. Springer, New York

    Google Scholar 

  • Harman WE Jr, Miller RH, Sidney Park W, Webb JP (1966) Aerial photography. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 195–242

    Google Scholar 

  • Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the fourth Alvey Vision conference AVC88, University of Sheffield Printing Office; Sheffield, 31 August–2 September 1988. BMVA, pp 147–151

    Google Scholar 

  • Hartley RI (1994) Projective reconstruction and invariants from multiple images. IEEE Trans Pattern Anal Mach Intell 16:1036–1041. doi:10.1109/34.329005

    Google Scholar 

  • Hartley RI, Mundy JL (1993) Relationship between photogrammetry and computer vision. In: SPIE (ed) Integrating photogrammetric techniques with scene analysis and machine vision, 11 Apr 1993, Orlando, FL, USA. SPIE, Bellingham, pp 92–105. doi:10.1117/12.155818

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hassett TJ, Mullen RR, Pilonero JT, Pugh HV, Freeman J, Speert JL (1966) Aerial mosaics and photomaps. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church

    Google Scholar 

  • Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30:328–341. doi:10.1109/TPAMI.2007.1166

    Google Scholar 

  • Imhof RK, Doolittle RC (1966) Map** from oblique photographs. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 875–917

    Google Scholar 

  • Juan L, Gwon O (2009) A comparison of SIFT, PCA-SIFT and SURF. Int J Image Process 3:143–152

    Google Scholar 

  • Jurie F, Schmid C (2004) Scale-invariant shape features for recognition of object categories. In: Proceedings of the 2004 IEEE Computer Society conference on computer vision and pattern recognition, CVPR 2004. IEEE Computer Society Press, Los Alamitos, 27 June–2 July, vol. 2, pp 90–96. doi:10.1109/CVPR.2004.1315149

  • Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45:83–105. doi:10.1023/A:1012460413855

    Google Scholar 

  • Kennedy D (1996) Aerial archaeology in the Middle East. AARGnews 12:11–15

    Google Scholar 

  • Kersten TP, Lindstaedt M (2012) Potential of automatic 3D object reconstruction from multiple images for applications in architecture, cultural heritage and archaeology. Int J Herit Digit Era 1:399–420. doi:10.1260/2047-4970.1.3.399

    Google Scholar 

  • Kraus K (2002) Zur Orthophoto-Terminologie. Photogramm Fernerkund Geoinf 6:451–452

    Google Scholar 

  • Kraus K (2007) Photogrammetry. Geometry from images and laser scans, 2nd edn. Walter de Gruyter, Berlin-New York

    Google Scholar 

  • Krijnen F (2008) A fresh look at aerial photography. http://www.aircatcher.com

  • Labun E (2009) ImageJ SURF. http://labun.com/imagej-surf/ImageJ_SURF_2009-12-01_08.19.jar

  • Lerma JL, Navarro S, Cabrelles M, Seguí AE, Haddad N, Akasheh T (2011) Integration of laser scanning and imagery for photorealistic 3D architectural documentation. In: Wang C-C (ed) Laser scanning, theory and applications. InTech, Shanghai, pp 413–430

    Google Scholar 

  • Lhuillier M, Quan L (2005) A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans Pattern Anal Mach Intell 27:418–433. doi:10.1109/TPAMI.2005.44

    Google Scholar 

  • Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30:79–116. doi:10.1023/A:1008045108935

    Google Scholar 

  • Lo Brutto M, Meli P (2012) Computer vision tools for 3D modelling in archaeology. Int J Herit Digit Era 1:1–6. doi:10.1260/2047-4970.1.0.1

    Google Scholar 

  • Lo Brutto M, Borruso A, D’Argenio A (2012) UAV systems for photogrammetric data acquisition of archaeological sites. Int J Herit Digit Era 1:7–14. doi:10.1260/2047-4970.1.0.7

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110. doi:10.1023/B:VISI.0000029664.99615.94

    Google Scholar 

  • Ludvigsen M, Eustice R, Singh H (2006) Photogrammetric models for marine archaeology. In: Proceedings of the IEEE/MTS OCEANS’06 conference and exhibition, Boston, MA, 18–21 Sept 2006. IEEE, Piscataway, pp 1–6. doi:10.1109/OCEANS.2006.306915

    Google Scholar 

  • Manzer G (1996) Avoiding digital orthophoto problems. In: Greve C (ed) Digital photogrammetry: an addendum to the manual of photogrammetry. American Society of Photogrammetry and Remote Sensing, Falls Church, pp 158–162

    Google Scholar 

  • Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 22:761–767. doi:10.1016/j.imavis.2004.02.006

    Google Scholar 

  • Mellor JP, Teller S, Lozano-Pérez T (1996) Dense depth maps from epipolar images, vol 1953, AI Lab technical memo. Massachusetts Institute of Technology/Artificial Intelligence Laboratory, Cambridge

    Google Scholar 

  • Microdrones GmbH (2008) Key Information for md4-1000 http://www.microdrones.com/products/md4-1000/md4-1000-key-information.php. Accessed 21 April 2008

  • Microsoft Corporation (2010) Photosynth. Microsoft Corporation, Redmond, http://photosynth.net/

  • Mikhail EM, Bethel JS, Chris McGlone J (2001) Introduction to modern photogrammetry. Wiley, New York

    Google Scholar 

  • Mikolajczyk K, Schmid C (2003) A performance evaluation of local descriptors. In: Proceedings of the 2003 IEEE Computer Society conference on computer vision and pattern recognition, CVPR 2003, Madison, WI, USA, 16–22 June 2003, vol. 2. IEEE Computer Society, Los Alamitos, pp 257–263. doi:10.1109/CVPR.2003.1211478

  • Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630. doi:10.1109/TPAMI.2005.188

    Google Scholar 

  • Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65:43–72

    Google Scholar 

  • Mills J (2005) Bias and the world of the vertical aerial photograph. In: Brophy K, Cowley D (eds) From the air: understanding aerial archaeology. Tempus, Stroud, pp 117–126

    Google Scholar 

  • Moisan L, Stival B (2004) A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int J Comput Vis 57:201–218. doi:10.1023/B:VISI.0000013094.38752.54

    Google Scholar 

  • Moons T, van Gool L, Vergauwen M (2008) 3D Reconstruction from multiple images, part 1: Principles. Found Trends Comput Graph Vis 4:287–404. doi:10.1561/0600000007

    Google Scholar 

  • Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3D objects. Int J Comput Vis 73:263–284. doi:10.1007/s11263-006-9967-1

    Google Scholar 

  • Morel J-M, Guoshen Yu (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2:438–469. doi:10.1137/080732730

    Google Scholar 

  • Moscatelli U (1985) Municipi romani della V regio Augustea: problemi storici ed urbanistici del Piceno centro-settentrionale (III – I sec. a.C.). PICUS Studi e ricerche sulle Marche nell’antichità 5:51–97

    Google Scholar 

  • Moscatelli U (1987) Materiali per la topografia storica di Potentia. In: Paci G (ed) Miscellanea di studi marchigiani in onore di Febo Allevi. Facoltà di Lettere e Filosofia/Università di Macerata, Agugliano, pp 429–438

    Google Scholar 

  • Mundy JL, Zisserman A (1992) Appendix – projective geometry for machine vision. In: Mundy JL, Zisserman A (eds) Geometric invariance in computer vision. MIT Press, Cambridge, pp 463–534

    Google Scholar 

  • Newhall B (2006) The history of photography. From 1839 to the present, 5th edn. Museum of Modern Art, New York/Boston

    Google Scholar 

  • Norton PR (2010) Photodetectors. In: Bass M, DeCusatis CM, Enoch JM, Lakshminarayanan V, Li G, MacDonald CA, Mahajan VN, van Stryland EW (eds) Handbook of optics, vol. II. Design, fabrication, and testing; sources and detectors; radiometry and photometry, 3rd edn. McGraw-Hill, New York, pp 24.3–24.102

    Google Scholar 

  • Ohno Y (2006) Basic concepts in photometry, radiometry and colorimetry. In: Dakin JP, Brown RGW (eds) Handbook of optoelectronics. Taylor & Francis, Boca Raton, pp 287–305

    Google Scholar 

  • Opitz R, Nowlin J (2012) Photogrammetric modeling + GIS: better methods for working with mesh data. ArcUser Spring:46–49

    Google Scholar 

  • Palmer R (1996) Editorial. AARGnews 13:3

    Google Scholar 

  • Palmer R (2005) If they used their own photographs they would not take them like that. In: Brophy K, Cowley D (eds) From the air: understanding aerial archaeology. Tempus, Stroud, pp 94–116

    Google Scholar 

  • Palmer R (2007) Seventy-five years v. Ninety minutes: implications of the 1996 Bedfordshire vertical aerial survey on our perceptions of clayland archaeology. In: Mills J, Palmer R (eds) Populating clay landscapes. Tempus, Stroud, pp 88–103

    Google Scholar 

  • Palmer JM, Grant BG (2010) The art of radiometry. SPIE, Bellingham

    Google Scholar 

  • Pollefeys M, van Gool L, Vergauwen M, Cornelis K, Verbiest F, Tops J (2001) Image-based 3D acquisition of archaeological heritage and applications. In: Proceedings of the 2001 conference on virtual reality, archaeology, and cultural heritage, Glyfada, Greece, 28–30 Nov 2001. Association for Computing Machinery, New York, pp 255–262

    Google Scholar 

  • Pollefeys M, van Gool L (2002) Visual modelling: from images to images. J Vis Comput Animat 13:199–209. doi:10.1002/vis.289

    Google Scholar 

  • Pollefeys M, Koch R, Vergauwen M, van Gool L (1998) Virtualizing archaeological sites. In Proceedings of the 4th international conference on virtual systems and multimedia, VSMM 98, Gifu, Japan, 18–20 Nov 1998. IOS Press, Amsterdam

    Google Scholar 

  • Pollefeys M, Koch R, Vergauwen M, van Gool L (2000) Automated reconstruction of 3D scenes from sequences of images. ISPRS J Photogramm Remote Sens 55:251–267. doi:10.1016/S0924-2716(00)00023-X

    Google Scholar 

  • Pollefeys M, van Gool L, Vergauwen M, Cornelis K, Verbiest F, Tops J (2003) 3D recording for archaeological fieldwork. IEEE Comput Graph Appl 23:20–27. doi:10.1109/MCG.2003.1198259

    Google Scholar 

  • Pollefeys M, van Gool L, Vergauwen M, Verbiest F, Cornelis K, Tops J, Koch R (2004) Visual modeling with a hand-held camera. Int J Comput Vis 59:207–232. doi:10.1023/B:VISI.0000025798.50602.3a

    Google Scholar 

  • Quan L (2010) Image-based modeling. Springer, New York

    Google Scholar 

  • Read RE, Graham R (2002) Manual of aerial survey. Primary data acquisition. CRC Press/Whittles Publishing, Boca Raton

    Google Scholar 

  • Reinhard J (2012) Things on strings and complex computer algorithms: kite aerial photography and structure from motion photogrammetry at the Tulul adh-Dhahab, Jordan. AARGnews 45:37–41

    Google Scholar 

  • Remondino F, Fraser C (2006) Digital camera calibration methods: considerations and comparisons. In ISPRS Commission V symposium ‘image engineering and vision metrology’, 25–27 Sept 2006. International Society for Photogrammetry and Remote Sensing, Dresden, pp 266–272

    Google Scholar 

  • Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D (2011) UAV photogrammetry for map** and 3d modelling: current status and future perspectives. In: Proceedings of the international conference on unmanned aerial vehicle in geomatics UAV-g, Zurich, Switzerland, 14–16 Sept 2011, vol 38(1/C22). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Zürich

    Google Scholar 

  • Remondino F, Del Pizzo S, Kersten TP, Troisi S (2012) Low-cost and open-source solutions for automated image orientation: a critical overview. In: Progress in cultural heritage preservation. In: Proceedings of the 4th international conference Euromed 2012, Lemessos, Cyprus. October 29–November 3, 2012. Springer, Berlin/Heidelberg, pp 40–54

    Google Scholar 

  • Robertson DP, Cipolla R (2009) Structure from motion. In: Varga M (ed) Practical image processing and computer vision. Wiley, New York

    Google Scholar 

  • Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. In: Proceedings of the tenth IEEE international conference on computer vision ICCV’05. IEEE Computer Society Press, Los Alamitos, 17–21 Oct 2005, vol 2, pp 1508–1515. doi:10.1109/ICCV.2005.104

    Google Scholar 

  • Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880. doi:10.2307/2288718

    Google Scholar 

  • Sarfraz MS, Hellwich O (2008) Head pose estimation in face recognition across pose scenarios. In: Proceedings of the third international conference on computer vision theory and applications VISAPP 2008, Funchal, Portugal, 22–25 Jan 2008, vol 1. INSTICC, Setúbal, pp 235–242

    Google Scholar 

  • Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47:7–42

    Google Scholar 

  • Schlitz M (2004) A review of low-level aerial archaeology and its application in Australia. Aust Archaeol 59:51–58

    Google Scholar 

  • Schmid C, Mohr R (1996) Combining grey value invariants with local constraints for object recognition. In: Proceedings of the 1996 IEEE Computer Society conference on computer vision and pattern recognition CVPR ‘96, San Francisco, California, 18 June–20 June 1996. IEEE Computer Society Press, Los Alamitos, pp 872–877. doi:10.1109/CVPR.1996.517174

  • Schneider S (1974) Luftbild und Luftbildinterpretation, vol 11, Lehrbuch der allgemeinen Geographie. Walter de Gruyter, Berlin/New York

    Google Scholar 

  • Schott JR (2007) Remote sensing. The image chain approach, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Schreiber WF (1967) Picture coding. Proc IEEE 55:320–330. doi:10.1109/PROC.1967.5488

    Google Scholar 

  • Scollar I, Giradeau-Montaut D (2012) Georeferenced orthophotos and DTMs from multiple oblique images. AARGnews 44:12–17

    Google Scholar 

  • Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing, vol 2, Topics in remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society conference on computer vision and pattern recognition CVPR’06, vol. 1. IEEE, Washington, DC, pp 519–528

    Google Scholar 

  • Sevara C (2013) Top Secret Topographies: Examining the potential for recovering two and three-dimensional archaeological information from historic reconnaissance datasets using image-based modelling techniques. Inl J of Heritage in the Digital Era 2:3

    Google Scholar 

  • Sewell ED, Livingston RG, Quick JR, Norton CL, Case JB, Sanders RG, Goldhammer JS, Aschenbrenner B (1966) Aerial cameras. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 133–194

    Google Scholar 

  • Slater PN, Doyle FJ, Fritz NL, Welch R (1983) Photographic systems for remote sensing. In: Colwell RN, Simonett DS, Ulaby FT (eds) Manual of remote sensing, vol. 1: Theory, instruments and techniques, 2nd edn. American Society of Photogrammetry, Falls Church, pp 231–291

    Google Scholar 

  • Smith SW (1997) The scientist and engineer’s guide to digital signal processing, 1st edn. California Technical Publishing, San Diego

    Google Scholar 

  • Snavely N (2010) Bundler: structure from motion for unordered image collections. Software

    Google Scholar 

  • Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graph 25:835–846

    Google Scholar 

  • Spurr SH (1960) Photogrammetry and photo-interpretation. With a section on applications to forestry, 2nd edn. The Ronald Press Company, New York

    Google Scholar 

  • Stichelbaut B, Bourgeois J, Saunders D, Chielens P (eds) (2009) Images of conflict. Military aerial photography and archaeology. Cambridge Scholars Publishing, Newcastle upon Tyne

    Google Scholar 

  • Strecha C, Fransens R, van Gool L (2006) Combined depth and outlier estimation in multi-view stereo. In: Proceedings of the 2006 IEEE Computer Society conference on computer vision and pattern recognition, CVPR’06. IEEE Computer Society Press, Los Alamitos, 17–22 June 2006, vol. 2. pp 2394–2401. doi:10.1109/CVPR.2006.78

  • Szeliski R (2011) Computer vision. Algorithms and applications, Texts in computer science. Springer, New York

    Google Scholar 

  • Taelman D, Deprez S, Vermeulen F, De Dapper M (2009) Granite and rock crystal quarrying in the Civitas Ammaiensis (north-eastern Alentejo, Portugal): a geoarchaeological case study. BABesch – Bulletin Antieke Beschaving 84:171–182

    Google Scholar 

  • Tewinkel GC, Schmid HH, Hallert B, Rosenfield GH (1966) Basic mathematics of photogrammetry. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol I, 3rd edn. American Society of Photogrammetry, Falls Church, pp 17–65

    Google Scholar 

  • Tingdahl D, Maarten V, van Gool L (2012) ARC3D: a public web service that turns photos into 3D models. In: Stanco F, Battiato S, Gallo G (eds) Digital imaging for cultural heritage preservation: analysis, restoration, and reconstruction of ancient artworks, Digital imaging and computer vision series. CRC Press, Boca Raton, pp 101–125

    Google Scholar 

  • Torr PHS (2002) Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int J Comput Vis 50:35–61. doi:10.1023/A:1020224303087

    Google Scholar 

  • Triggs B, Mclauchlan PF, Hartley RI, Andrew F (2000) Bundle adjustment – a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice: proceedings of the international workshop on vision algorithms, Corfu, Greece, September 1999, vol 1883, Lecture notes in computer science. Springer, London, pp 298–372

    Google Scholar 

  • Turpin RD, Ramey EH, Case JB, Coleman CG, Lynn WD, Michaelis OE (1966) Definitions of terms and symbols used in photogrammetry. In: Thompson MM, Eller RC, Radlinski WA, Speert JL (eds) Manual of photogrammetry, vol II, 3rd edn. American Society of Photogrammetry, Falls Church, pp 1125–1161

    Google Scholar 

  • Tuytelaars T, Mikolajczyk K (2007) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3:177–280. doi:10.1561/0600000017

    Google Scholar 

  • Ullman S (1979) The interpretation of structure from motion. Proc R Soc B Biol Sci 203:405–426. doi:10.1098/rspb.1979.0006

    Google Scholar 

  • Verhoeven G (2008a) Exploring the edges of the unseen: an attempt to digital aerial UV photography. In: Remote sensing for archaeology and cultural heritage management: proceedings of the 1st International EARSeL workshop CNR, Rome, September 30–October 4, 2008. Aracne, Rome, pp 79–83

    Google Scholar 

  • Verhoeven G (2008b) Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J Archaeol Sci 35:3087–3100. doi:10.1016/j.jas.2008.06.012

    Google Scholar 

  • Verhoeven G (2009a) Beyond conventional boundaries. New technologies, methodologies, and procedures for the benefit of aerial archaeological data acquisition and analysis. PhD thesis, Nautilus Academic Books, Zelzate

    Google Scholar 

  • Verhoeven G (2009b) Providing an archaeological bird’s-eye view: an overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in archaeology. Archaeol Prospect 16:233–249. doi:10.1002/arp.354

    Google Scholar 

  • Verhoeven G (2011) Taking computer vision aloft: archaeological three-dimensional reconstructions from aerial photographs with PhotoScan. Archaeol Prospect 18:67–73. doi:10.1002/arp.399

    Google Scholar 

  • Verhoeven G (2012a) Methods of visualisation. In: Edwards HGM, Vandenabeele PV (eds) Analytical archaeometry: selected topics. Royal Society of Chemistry, Cambridge, pp 3–48

    Google Scholar 

  • Verhoeven G (2012b) Near-infrared aerial crop mark archaeology: from its historical use to current digital implementations. J Archaeol Method Theory 19:132–160. doi:10.1007/s10816-011-9104-5

    Google Scholar 

  • Verhoeven G (2012c) Straightforward archeological orthophotos from oblique aerial images. SPIE Newsroom. doi:10.1117/2.1201210.004506

    Google Scholar 

  • Verhoeven G, Schmitt KD (2010) An attempt to push back frontiers: digital near-ultraviolet aerial archaeology. J Archaeol Sci 37:833–845. doi:10.1016/j.jas.2009.11.013

    Google Scholar 

  • Verhoeven G, Loenders J, Vermeulen F, Docter R (2009a) Helikite aerial photography: a versatile means of unmanned, radio controlled, low-altitude aerial archaeology. Archaeol Prospect 16:125–138. doi:10.1002/arp.353

    Google Scholar 

  • Verhoeven G, Smet P, Poelman D, Vermeulen F (2009b) Spectral characterization of a digital still camera’s NIR modification to enhance archaeological observation. IEEE Trans Geosci Remote Sens 47:3456–3468. doi:10.1109/TGRS.2009.2021431

    Google Scholar 

  • Verhoeven G, Doneus M, Briese C, Vermeulen F (2012a) Map** by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. J Archaeol Sci 39:2060–2070. doi:10.1016/j.jas.2012.02.022

    Google Scholar 

  • Verhoeven G, Taelman D, Vermeulen F (2012b) Computer vision-based orthophoto map** of complex archaeological sites: the ancient quarry of Pitaranha (Portugal-Spain). Archaeometry 54:1114–1129. doi:10.1111/j.1475-4754.2012.00667.x

    Google Scholar 

  • Vermeulen F (2002) The potenza valley survey (Marche). In: New developments in italian landscape archaeology: theory and methodology of field survey, land evaluation and landscape perception, pottery production and distribution. Proceedings of a three-day conference held at the University of Groningen, 13–15 Apr 2000. Archaeopress, Oxford, pp 104–106

    Google Scholar 

  • Vermeulen F (2004) Fotografia aerea finalizzata nelle Marche centrali: un progetto integrato. Archeologia Aerea Studi di Aerotopografia Archeologica 1:91–118

    Google Scholar 

  • Vermeulen F, Taelman D (2010) From cityscape to landscape in Roman Lusitania: the Municipium of Ammaia. In: Changing landscapes: the impact of Roman towns in the Western Mediterranean. Proceedings of the International Colloquium, Castelo de Vide, Marvão. 15–17 May 2008. AnteQuem, Bologna, pp 311–324

    Google Scholar 

  • Wells J, Wells R (2012). Kite aerial photography in the near infra-red and ultra-violet. http://www.armadale.org.uk/phototech05.htm. Accessed 11 February 2013

  • Whittlesey JH (1973) Balloons, ‘flying mattresses’ and photography. Expedition 15:30–39

    Google Scholar 

  • Wilson DR (1975) Photographic techniques in the air. In: Wilson DR (ed) Aerial reconnaissance for archaeology, vol 12, Research report series. The Council for British Archaeology, London, pp 12–31

    Google Scholar 

  • Wilson DR (2000) Air photo interpretation for archaeologists, 2nd edn. Tempus, Stroud

    Google Scholar 

  • Wolf PR, Dewitt BA (2000) Elements of photogrammetry with applications in GIS, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  • Xu G, Jun-ichi Terai, Heung-Yeung Shum (2000) A linear algorithm for camera self-calibration, motion and structure recovery for multi-planar scenes from two perspective images. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE Computer Society Press, Los Alamitos, 13–15 June 2000, pp 474–479. doi:10.1109/CVPR.2000.854886

  • Yu G, Morel J-M (2011) ASIFT: an algorithm for fully affine invariant comparison. IPOL. doi:10.5201/ipol.2011.my-asift

    Google Scholar 

  • Zantopp R (1995) Methode und Möglichkeiten der Luftbildarchäologie im Rheinland. In: Jürgen K (ed) Luftbildarchäologie in Ost- und Mitteleuropa/Aerial archaeology in Eastern and Central Europe: Internationales Symposium, Kleinmachnow, Land Brandenburg, 26–30 Sept 1994, vol 3, Forschungen zur Archäologie im Land Brandenburg. Verlag Brandenburgisches Landesmuseum für Ur- und Frühgeschichte, Potsdam, pp 155–163

    Google Scholar 

Download references

Acknowledgements

This article has been written within the framework of the Austrian Science Fund (FWF): P 24116-N23. The case study from the Potenza Valley Survey project was made possible thanks to support from Belgian Science Policy (Interuniversity Attraction Poles, project P6/22). The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (archpro.lbg.ac.at) is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (A), the University of Vienna (A), the Vienna University of Technology (A), the Austrian Central Institute for Meteorology and Geodynamic (A), the office of the Provincial Government of Lower Austria (A), Airborne Technologies GmbH (A), RGZM (Roman-Germanic Central Museum) Mainz (D), RAÄ (Swedish National Heritage Board) (S), IBM VISTA (University of Birmingham) (GB) and NIKU (Norwegian Institute for Cultural Heritage Research) (N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Verhoeven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verhoeven, G., Sevara, C., Karel, W., Ressl, C., Doneus, M., Briese, C. (2013). Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery. In: Corsi, C., Slapšak, B., Vermeulen, F. (eds) Good Practice in Archaeological Diagnostics. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-01784-6_3

Download citation

Publish with us

Policies and ethics

Navigation