Vaccine Delivery Systems: Roles, Challenges and Recent Advances

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

The overwhelming majority of vaccine antigens are biological macromolecules, such as proteins and polysaccharides, typically with a molecular weight greater than 10,000. As such, they need to be delivered to the body in the correct conformation in order to elicit the desired immune response and to effectively target the immune cells. Currently, most vaccines are administered parenterally via the intradermal, subcutaneous or intramuscular route, the choice largely dependent on whether the antigen is in the adsorbed or nonadsorbed state. However, these routes have major drawbacks, including pain associated with the use of needles, the potential for needle contamination, practicalities of needle disposal and the need for a primary healthcare worker. There is now a particular focus on the development of mucosal vaccines, designed for direct application to mucosal surfaces such as those present in the mouth, nose, vagina and rectum.

Often, simple antigen solutions are immunologically ineffective when delivered by these mucosal routes, owing to difficulties associated with mucosal retention and uptake. A diverse range of formulation strategies, including microspheres, liposomes, nanoparticles and virus-like particles, are now being actively investigated. In addition to the design and selection of the antigen candidate, the choice and preparation of the antigen delivery system is crucial to achieve the end goal of vaccination. In this chapter, an overview of the role and considerations for the design of vaccine delivery systems is presented, with particular focus on the challenges and recent advances in the field of colloidal and nano-sized delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachmann, M.F., Jennings, G.T.: Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010)

    Article  PubMed  CAS  Google Scholar 

  2. Pattani, A., et al.: Molecular investigations into vaginal immunization with HIV gp41 antigenic construct H4A in a quick release solid dosage form. Vaccine 30, 2778–2785 (2012)

    Article  PubMed  CAS  Google Scholar 

  3. Donnelly, R.F., et al.: Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 28, 41–57 (2011)

    Article  PubMed  CAS  Google Scholar 

  4. Duerr, A.: Update on mucosal HIV vaccine vectors. Curr. Opin. HIV AIDS 5, 397–403 (2010)

    Article  PubMed  Google Scholar 

  5. Neutra, M.R., Kozlowski, P.A.: Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. Wong, Y., et al.: Drying a tuberculosis vaccine without freezing. Proc. Natl. Acad. Sci. 104, 2591–2595 (2007)

    Article  PubMed  CAS  Google Scholar 

  7. Vyas, S.P., Gupta, P.N.: Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev. Vaccines 6, 401–418 (2007)

    Article  PubMed  CAS  Google Scholar 

  8. Perrie, Y., Frederik, P.M., Gregoriadis, G.: Liposome-mediated dna vaccination: the effect of vesicle composition. Vaccine 19, 3301–3310 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. Yan, W., Chen, W., Huang, L.: Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol. Immunol. 44, 3672–3681 (2007)

    Article  PubMed  CAS  Google Scholar 

  10. Arias, M.A., et al.: Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine 29, 1258–1269 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. Borges, O., et al.: Immune response by nasal delivery of hepatitis B surface antigen and co-delivery of a CPG ODN in alginate coated chitosan nanoparticles. Eur. J. Pharm. Biopharm. 69, 405–416 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. O’Hagan, D.T., Singh, M., Gupta, R.K.: Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev. 32, 225–246 (1998)

    Article  PubMed  Google Scholar 

  13. Prausnitz, M.R., Mikszta, J.A., Cormier, M., Andrianov, A.K.: Microneedle-based vaccines. Curr. Top. Microbiol. Immunol. 333, 369–393 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. Sullivan, S.P., et al.: Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. Donnelly, R. F.: Microneedle-mediated intradermal delivery. In: Donnelly, R. F., Thakur, R. R. S., Morrow, D. I. J., Woolfson, A. D. Microneedle-mediated transdermal and intradermal drug delivery. Blackwell, Chichester, West Sussex (2011)

    Google Scholar 

  16. Curran, R.M., et al.: Vaginal delivery of the recombinant HIV-1 clade-C trimeric gp140 envelope protein CN54gp140 within novel rheologically structured vehicles elicits specific immune responses. Vaccine 27, 6791–6798 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. Tiwari, S., et al.: Liposome in situ gelling system: novel carrier based vaccine adjuvant for intranasal delivery of recombinant protein vaccine. Procedia. Vaccinol. 1, 148–163 (2009)

    Article  CAS  Google Scholar 

  18. Donnelly, L., et al.: Intravaginal immunization using the recombinant HIV-1 clade-C trimeric envelope glycoprotein CN54gp140 formulated within lyophilized solid dosage forms. Vaccine 29, 4512–4520 (2011)

    Article  PubMed  CAS  Google Scholar 

  19. Gupta, P.N., et al.: Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140. Eur. J. Pharm. Sci. 46, 315–322 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. Black, C.A., et al.: Vaginal mucosa serves as an inductive site for tolerance. J. Immunol. 165, 5077–5083 (2000)

    PubMed  CAS  Google Scholar 

  21. Mestecky, J., Moldoveanu, Z., Elson, C.O.: Immune response versus mucosal tolerance to mucosally administered antigens. Vaccine 23, 1800–1803 (2005)

    Article  PubMed  CAS  Google Scholar 

  22. Howland, S.W., Wittrup, K.D.: Antigen release kinetics in the phagosome are critical to cross-presentation efficiency1. J. Immunol. 180, 1576 (2008)

    PubMed  CAS  Google Scholar 

  23. Shen, H., et al.: Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. Singh, M., et al.: Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine 15, 475–481 (1997)

    Article  PubMed  CAS  Google Scholar 

  25. Singh, M., et al.: Cationic microparticles are an effective delivery system for immune stimulatory CPG DNA. Pharm. Res. 18, 1476–1479 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. O’Hagan, D.T., Rappuoli, R.: The safety of vaccines. Drug Discov. Today 9, 846–854 (2004)

    Article  PubMed  Google Scholar 

  27. O’Hagan, D.T., Valiante, N.M.: Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2, 727–735 (2003)

    Article  PubMed  Google Scholar 

  28. Watanabe, M., Nagai, M., Funaishi, K., Endoh, M.: Efficacy of chemically cross-linked antigens for acellular pertussis vaccine. Vaccine 19, 1199–1203 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. Jegerlehner, A., et al.: A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine 20, 3104–3112 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. Kersten, G.F.A., Crommelin, D.J.A.: Liposomes and ISCOMS. Vaccine 21, 915–920 (2003)

    Article  PubMed  CAS  Google Scholar 

  31. Gómez, S., et al.: Gantrez® AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine 25, 5263–5271 (2007)

    Article  PubMed  Google Scholar 

  32. Cubas, R., et al.: Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J. Immunother. 32, 118–128 (2009)

    Article  PubMed  Google Scholar 

  33. Foged, C., Brodin, B., Frokjaer, S., Sundblad, A.: Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298, 315–322 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. Blanco, M.D., Alonso, M.J.: Development and characterization of protein-loaded poly (lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 43, 287–294 (1997)

    Article  CAS  Google Scholar 

  35. Zajac, P., et al.: Enhanced generation of cytotoxic T lymphocytes using recombinant vaccinia virus expressing human tumor-associated antigens and B7 co-stimulatory molecules. Cancer Res. 58, 4567–4571 (1998)

    PubMed  CAS  Google Scholar 

  36. Ríhová, B.: Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv. Drug Deliv. Rev. 54, 653–674 (2002)

    Article  PubMed  Google Scholar 

  37. Strong, P., Clark, H., Reid, K.: Intranasal application of chitin microparticles down-regulates symptoms of allergic hypersensitivity to dermatophagoides pteronyssinus and aspergillus fumigatus in murine models of allergy. Clin. Exp. Allergy 32, 1794–1800 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. Rogers, P.R., Croft, M.: Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J. Immunol. 163, 1205–1213 (1999)

    PubMed  CAS  Google Scholar 

  39. Johansen, P., Merkle, H.P., Gander, B.: Physico-chemical and antigenic properties of tetanus and diphtheria toxoids and steps towards improved stability. Biochim. Biophys. Acta 1425, 425–436 (1998)

    Article  PubMed  CAS  Google Scholar 

  40. Hart, B.A., et al.: Liposome-mediated peptide loading of MHC-DR molecules in vivo. FEBS Lett. 409, 91–95 (1997)

    Article  Google Scholar 

  41. Van Dissel, J.T., et al.: Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine 28, 3571–3581 (2010)

    Article  PubMed  Google Scholar 

  42. O’Hagan, D.T.E.A.: Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73, 239–242 (1991)

    PubMed  Google Scholar 

  43. Putney, S.D., Burke, P.A.: Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16, 153–157 (1998)

    Article  PubMed  CAS  Google Scholar 

  44. Eldridge, J.H., et al.: Biodegradable microspheres as a vaccine delivery system. Mol. Immunol. 28, 287–294 (1991)

    Article  PubMed  CAS  Google Scholar 

  45. Audran, R., Men, Y., Johansen, P., Gander, B., Corradin, G.: Enhanced immunogenicity of microencapsulated tetanus toxoid with stabilizing agents. Pharm. Res. 15, 1111–1116 (1998)

    Article  PubMed  CAS  Google Scholar 

  46. Gupta, P.N., Khatri, K., Goyal, A.K., Mishra, N., Vyas, S.P.: M-cell targeted biodegradable plga nanoparticles for oral immunization against hepatitis B. J. Drug Target. 15, 701–713 (2007)

    Article  PubMed  CAS  Google Scholar 

  47. Moser, C., Metcalfe, I.C., Viret, J.F.: Virosomal adjuvanted antigen delivery systems. Expert Rev. Vaccines 2, 189–196 (2003)

    Article  PubMed  CAS  Google Scholar 

  48. Durrer, P., et al.: Mucosal antibody response induced with a nasal virosome-based influenza vaccine. Vaccine 21, 4328–4334 (2003)

    Article  PubMed  CAS  Google Scholar 

  49. Barr, I.G., Sjölander, A., Cox, J.C.: ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev. 32, 247–271 (1998)

    Article  PubMed  CAS  Google Scholar 

  50. Lenarczyk, A., et al.: ISCOM® based vaccines for cancer immunotherapy. Vaccine 22, 963–974 (2004)

    Article  PubMed  CAS  Google Scholar 

  51. Ennis, F.A., et al.: Augmentation of human influenza A virus-specific cytotoxic t lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMs). Virology 259, 256–261 (1999)

    Article  PubMed  CAS  Google Scholar 

  52. Casals, J., Freund, J.: Sensitization and antibody formation in monkeys injected with tubercle bacilli in paraffin oil. J. Immunol. 36, 399–404 (1939)

    Google Scholar 

  53. Ott, G., Barchfeld, G.L., Nest, G.V.: Enhancement of humoral response against human influenza vaccine with the simple submicron oil/water emulsion adjuvant MF59. Vaccine 13, 1557–1562 (1995)

    Article  PubMed  CAS  Google Scholar 

  54. Pattani, A., et al.: Characterisation of protein stability in rod-insert vaginal rings. Int. J. Pharm. 430, 89–97 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem N. Gupta PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pattani, A., Gupta, P.N., Curran, R.M., Malcolm, R.K. (2014). Vaccine Delivery Systems: Roles, Challenges and Recent Advances. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_20

Download citation

Publish with us

Policies and ethics

Navigation