The Critical Point Infinity Associated with Indefinite Sturm–Liouville Problems

  • Reference work entry
  • First Online:
Operator Theory

Abstract

Consider the indefinite Sturm–Liouville problem \(-f^{{\prime\prime}} = \lambda rf\) on [−1, 1] with Dirichlet boundary conditions and with a real weight function rL 1[−1, 1] changing its sign. The question is studied whether or not the eigenfunctions form a Riesz basis of the Hilbert space L | r | 2[−1, 1] or, equivalently, is a regular critical point of the associated definitizable operator in the Kreĭn space L r 2[−1, 1]. This question is also related to other subjects of mathematical analysis like half range completeness, interpolation spaces, HELP-type inequalities, regular variation, and Kato’s representation theorems for non-semibounded sesquilinear forms. The eigenvalue problem can be generalized to arbitrary self-adjoint boundary conditions, singular endpoints, higher order, higher dimension, and signed measures. The present paper tries to give an overview over the so far known results in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 801.43
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abasheeva, N.L., Pyatkov, S.G.: Counterexamples in indefinite Sturm–Liouville problems. Sib. Adv. Math. 7(4), 1–8 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Baouendi, M.S., Grisvard, P.: Sur une équation d’évolution changeant de type. J. Funct. Anal. 2, 352–367 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beals, R.: Partial-range completeness and existence of solutions to two-way diffusion. J. Math. Phys. 22, 954–960 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beals, R.: Indefinite Sturm–Liouville problems and half range completeness. J. Differ. Equ. 56, 391–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennewitz, C.: The HELP inequality in the regular case. Internat. Schriftenreihe Numer. Math. 80, 337–346 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Bennewitz, C., Brown, B.M., Weikard, R.: Inverse spectral and scattering theory for the half-line left-definite Sturm Liouville problem. SIAM J. Math. Anal. 40(5), 2105–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Binding, P., Ćurgus, B.: A counterexample in Sturm–Liouville completeness theory. Proc. R. Soc. Edinb. A 134, 244–248 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Binding, P., Ćurgus, B.: Riesz bases of root vectors of indefinite Sturm–Liouville problems with eigenparameter dependent boundary conditions, I, II. Oper. Theory Adv. Appl. 163, 75–95 (2006); Integr. Equ. Oper. Theory 63, 473–499 (2009)

    Google Scholar 

  9. Binding, P., Fleige, A.: Conditions for an indefinite Sturm–Liouville Riesz basis property. Oper. Theory Adv. Appl. 198, 87–95 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Binding, P., Fleige, A.: A review of a Riesz basis property for indefinite Sturm–Liouville problems. Oper. Matrices 5, 735–755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Binding, P., Hryniv, R.: Full- and partial-range completeness. Oper. Theory Adv. App. 130, 121–133 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Binding, P., Karabash, I.: Absence of existence and uniqueness for forward–backward parabolic equations on a half-line. Oper. Theory Adv. Appl. 203, 89–98 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bingham, N.H., Goldie, C.M., Teugels, J.T.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  14. Buldygin, V.V., Klesov, O.I., Steinebach, J.S.: On some properties of asymptotic quasi-inverse functions. Theory Probab. Math. Stat. 77, 15–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ćurgus, B.: On the regularity of the critical point infinity of definitizable operators. Integr. Equ. Oper. Theory 8, 462–488 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ćurgus, B.: Boundary value problems in Krein spaces. Dedicated to the memory of Branko Najman. Glas. Mat. Ser. III 35 (55)(1), 45–5 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Ćurgus, B.: Orthonormal sets in Krein spaces (in preparation)

    Google Scholar 

  18. Ćurgus, B., Langer, H.: A Krein space approach to symmetric ordinary differential operators with an indefinite weight function. J. Differ. Equ. 79, 31–61 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ćurgus, B., Najman, B.: A Krein space approach to elliptic eigenvalue problems with indefinite weights. Differ. Integr. Equ. 7, 1241–1252 (1994)

    MATH  MathSciNet  Google Scholar 

  20. Ćurgus, B., Najman, B.: The operator \((\mathrm{sgn}\,x) \frac{d^{2}} {dx^{2}}\) is similar to a selfadjoint operator in \(L^{2}(\mathbb{R})\). Proc. Am. Math. Soc. 123, 1125–1128 (1995)

    MATH  MathSciNet  Google Scholar 

  21. Ćurgus, B., Najman, B.: Positive differential operators in Krein space \(L^{2}(\mathbb{R})\). Oper. Theory Adv. Appl. 87, 95–104 (1996)

    MATH  MathSciNet  Google Scholar 

  22. Ćurgus, B., Najman, B.: Positive differential operators in the Krein space \(L^{2}(\mathbb{R}^{n})\). Oper. Theory Adv. Appl. 106, 113–129 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Ćurgus, B., Fleige, A., Kostenko, A.: The Riesz basis property of an indefinite Sturm–Liouville problem with non-separated boundary conditions. Integr. Equ. Oper. Theory 77, 533–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Daho, K., Langer, H.: Sturm–Liouville operators with an indefinite weight function. Proc. R. Soc. Edinb. Sect. A 87, 161–191 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Dijksma, A., Langer, H.: Operator theory and ordinary differential operators. In: Lectures on Operator Theory and its Applications, Waterloo, 1994. Fields Institute of Monographs, vol. 3, pp. 73–139. American Mathematical Society, Providence (1996)

    Google Scholar 

  26. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic, New York/San Francisco/London (1976)

    MATH  Google Scholar 

  27. Evans, W.D., Everitt, W.N.: A return to the Hardy-Littlewood integral inequality. Proc. R. Soc. Lond. A 380, 447–486 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Evans, W.D., Everitt, W.N.: HELP inequalities for limit-circle and regular problems. Proc. R. Soc. Lond. A 432, 367–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feller, W.: Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1, 459–504 (1957)

    MathSciNet  MATH  Google Scholar 

  30. Fisch, N.J., Kruskal, M.D.: Separating variables in two-way diffusion equations. J. Math. Phys. 21, 740–750 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Faierman, M., Langer, H.: Elliptic problems involving an indefinite weight function. Oper. Theory Adv. Appl. 87, 105–127 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Faierman, M., Roach, G.F.: Full and Half Range Eigenfunction Expansions for an Elliptic Boundary Value Problem Involving an Indefinite Weight. Lecture Notes in Pure and Applied Mathematics, vol. 118, pp. 231–236. Dekker, New York/Basel (1989)

    Google Scholar 

  33. Fleige, A.: The turning point conditionnnn of Beals for indefinite Sturm–Liouville problems. Math. Nachr. 172, 109–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fleige, A.: Spectral Theory of Indefinite Krein–Feller Differential Operators. Mathematical Research, vol. 98. Akademie, Berlin (1996)

    MATH  Google Scholar 

  35. Fleige, A.: A counterexample to completeness properties for indefinite Sturm–Liouville problems. Math. Nachr. 190, 123–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fleige, A.: Non-semibounded sesquilinear forms and left-indefinite Sturm–Liouville problems. Integr. Equ. Oper. Theory 33, 20–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fleige, A.: A necessary aspect of the generalized Beals condition for the Riesz Basis property of indefinite Sturm–Liouville problems. Oper. Theory Adv. Appl. 175, 89–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fleige, A.: The Riesz basis property of an indefinite Sturm–Liouville problem with a non odd weight function. Integr. Equ. Oper. Theory 60, 237–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fleige, A.: A failing eigenfunction expansion associated with an indefinite Sturm–Liouville problem. J. Math. Anal. Appl. 389, 932–949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fleige, A.: Characterizations of monotone O-regularly varying functions by means of indefinite eigenvalue problems and HELP type inequalities. J. Math. Anal. Appl. 412, 345–359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fleige, A., Najman, B.: Nonsingularity of critical points of some differential and difference operators. Oper. Theory Adv. Appl. 102, 85–95 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Fleige, A., Hassi, S., de Snoo, H.S.V.: A Kreĭn space approach to representation theorems and generalized Friedrichs extensions. Acta Sci. Math. (Szeged) 66, 633–650 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Fleige, A., Hassi, S., de Snoo, H.S.V., Winkler, H.: Sesquilinear forms corresponding to a non-semibounded Sturm–Liouville operator. Proc. R. Soc. Edinb. A 140, 291–318 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Fleige, A., Hassi, S., de Snoo, H.S.V., Winkler, H.: Non-semibounded closed symmetric forms associated with a generalized Friedrichs extension. Proc. R. Soc. Edinb. A 144, 731–745 (2014)

    Article  MATH  Google Scholar 

  45. Ganchev, A.H., Greenberg, W., van der Mee, C.V.M.: A class of linear kinetic equations in a Krein space setting. Integr. Equ. Oper. Theory 11, 518–535 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  46. Gohberg, I.C., Kreĭn, M.G.: Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)

    Google Scholar 

  47. Kac, I.S., Kreĭn, M.G.: On the spectral function of the string. Trans. Am. Math. Soc. Ser. 2(103), 19–102 (1974)

    MATH  Google Scholar 

  48. Kaper, H.G., Kwong, M.K., Lekkerkerker, C.G., Zettl, A.: Full- and partial-range eigenfunction expansion for Sturm–Liouville problems with indefinite weights. Proc. R. Soc. Edinb. A 98, 69–88 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Karabash, I.M.: J-selfadjoint ordinary differential operators similar to selfadjoint operators. Methods Funct. Anal. Topol. 6(2), 22–49 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Karabash, I.M., Kostenko, A.S.: Spectral analysis of differential operators with indefinite weights and a local point interaction. Oper. Theory Adv. Appl. 175, 169–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Karabash, I.M., Kostenko, A.S.: Indefinite Sturm–Liouville operators with the singular critical point zero. Proc. R. Soc. Edinb. A 138, 801–820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Karabash, I.M., Malamud, M.M.: Indefinite Sturm–Liouville operators \((\mathrm{sgn}\,\,x)(-d^{2}/dx^{2} + q(x))\) with finite-zone potentials. Oper. Matrices 1, 301–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Karabash, I.M., Kostenko, A.S., Malamud, M.M.: The similarity problem for J-nonnegative Sturm–Liouville operators. J. Differ. Equ. 246, 964–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  55. Kostenko, A.: The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients. Oper. Matrices 5, 705–722 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Kostenko, A.: The similarity problem for indefinite Sturm–Liouville operators and the HELP inequality. Adv. Math. 246, 368–413 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kostenko, A.: On a necessary aspect for the Riesz basis property for indefinite Sturm–Liouville problems. Math. Nachr. 287, 1710–1732 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Langer, H.: Zur Spektraltheorie verallgemeinerter gewhnlicher Differentialoperatoren zweiter Ordnung mit einer nichtmonotonen Gewichtsfunktion, vol. 14. Universität Jyvskylä, Mathematisches Institut, Bericht (1972)

    Google Scholar 

  59. Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Butkovic, D., Kraljevic, H., Kurepa, S. (eds.) Functional Analysis. Conf. held at Dubrovnik, November 2–14, 1981. Lecture Notes in Mathematics, vol. 948, pp. 1–46. Springer, Berlin/Heidelberg/New York (1982)

    Google Scholar 

  60. Parfenov, A.I.: On an embedding criterion for interpolation spaces and application to indefinite spectral problems. Sib. Math. J. 44(4), 638–644 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. Parfenov, A.I.: The Ćurgus condition in indefinite Sturm–Liouville problems. Sib. Adv. Math. 15(2), 68–103 (2005)

    MathSciNet  MATH  Google Scholar 

  62. Philipp, F.: Indefinite Sturm–Liouville operators with periodic coefficients. Oper. Matrices 7, 777–811 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pyatkov, S.G.: On the solvability of a boundary value problem for a parabolic equation with changing time direction. Soviet Math. Dokl. 32(3), 895–897 (1985)

    MATH  Google Scholar 

  64. Pyatkov, S.G.: Some properties of eigenfunctions of linear sheaves. Sibirsk. Mat. Zh. 30(4), 111–124, 218 (1989, Russian); translation in Sib. Math. J. 30(4), 587–597 (1989)

    Google Scholar 

  65. Pyatkov, S.G.: Certain properties of eigenfunctions of linear pencils. Mat. Zametki 51(1), 141–148 (1992, Russian); translation in Math. Notes 51(1–2), 90–95 (1992)

    Google Scholar 

  66. Pyatkov, S.G.: Elliptic eigenvalue problems with an indefinite weight function. Sib. Adv. Math. 4(2), 87–121 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Pyatkov, S.G.: Riesz completeness of the eigenelements and associated elements of linear selfadjoint pencils. Russian Acad. Sci. Sb. Math. 81(2), 343–361 (1995)

    MathSciNet  Google Scholar 

  68. Pyatkov, S.G.: Interpolation of some function spaces and indefinite Sturm–Liouville problems. Oper. Theory Adv. Appl. 102, 179–200 (1998)

    MathSciNet  MATH  Google Scholar 

  69. Pyatkov, S.G.: Operator Theory. Nonclassical Problems. VSP, Utrecht (2002)

    Book  MATH  Google Scholar 

  70. Pyatkov, S.G.: Some properties of eigenfunctions and associated functions of indefinite Sturm–Liouville problems. In: Nonclassical Problems of Mathematical Physics, pp. 240–251. Sobolev Institute of Mathematics, Novosibirsk (2005, Russian)

    Google Scholar 

  71. Pyatkov, S.G.: Interpolation of Sobolev spaces and indefinite elliptic spectral problems. Oper. Theory Adv. Appl. 198, 265–290 (2010)

    MathSciNet  MATH  Google Scholar 

  72. Rogozin, B.A.: A Tauberian theorem for increasing functions of dominated variation. Siberian Math. J. 43(2), 353–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Seneta, E.: Regularly Varying Functions. Lecture Notes in Mathematics, vol. 508. Springer, Berlin/Heidelberg/New York (1976)

    Book  MATH  Google Scholar 

  74. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    MATH  Google Scholar 

  75. Volkmer, H.: Sturm–Liouville problems with indefinite weights and Everittnns inequality. Proc. R. Soc. Edinb. Sect. A 126, 1097–1112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fleige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Fleige, A. (2015). The Critical Point Infinity Associated with Indefinite Sturm–Liouville Problems. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_44

Download citation

Publish with us

Policies and ethics

Navigation