Optimization Processes for Automated Design of Industrial Systems

  • Conference paper
  • First Online:
Optimal Design and Control of Multibody Systems (IUTAM 2022)

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 42))

  • 126 Accesses

Abstract

Mechanics was one of the earliest application fields demonstrating the power of rule-based deduction of general formalisms from rather few basic axioms. The usual transformation of design problems into classical optimization problems and their solution by nonlinear programming algorithms follows the same principle, and is thus mainly used by the mechanics and control community. System design on an industrial scale, however, is a much more challenging creative task, which cannot be formalized so easily, which is why it is mostly still human-driven. In order to break up this game stopper, algorithms for multi-criterion optimization, function approximation and statistical sensitivity analysis may be integrated in a common design process. Especially the emerging field of data-driven artificial intelligence (AI) methods may become the pushing game changer. The paper will demonstrate major challenges of industrial design and some solution strategies to bridge the gap between engineering design intuition and formalized problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bestle, D.: Analyse und Optimierung von Mehrkörpersystemen. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-52352-6

  2. Szuster, M., Hendzel, Z.: Intelligent Optimal Adaptive Control for Mechatronic Systems. SSDC, vol. 120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68826-8

  3. Haug, E.J., Arora, J.S.: Applied Optimal Design: Mechanical and Structural Systems. Wiley, New York (1979)

    Google Scholar 

  4. Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)

    Google Scholar 

  5. Bischof, C., Lang, B., Vehreschild, A.: Automatic differentiation for MATLAB programs. Appl. Math. Mech. 2, 50–53 (2003). https://doi.org/10.1002/pamm.200310013

  6. Haftka, R.T., Sobieszczanski-Sobieski, J.: Structural optimization: history. In: Excyclopedia of Optimization, pp. 3834–3836. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-74759-0_669

  7. Kuslits, M., Bestle, D.: Multiobjective performance optimisation of a new differential steering concept. Veh. Syst. Dyn. 60, 73–95 (2020)

    Article  Google Scholar 

  8. Busch, J., Bestle, D.: Optimisation of lateral car dynamics taking into account parameter uncertainties. Veh. Syst. Dyn. 52, 166–185 (2014)

    Article  Google Scholar 

  9. Wehbi, K., Bestle, D., Kahlbau, S.: Multi-objective launch control optimization for automatic clutch engagement. In: Proceedings of the 6th International Conference on Experiments/Process/System Modelling/Simulation/Optimization (IC-EpsMsO), Athens (2015)

    Google Scholar 

  10. Wurm, A., Bestle, D., Kahlbau, S.: Automotive shift quality optimization based on piecewise monotone interpolation of parameter characteristics. In: Proceedings of the 4th International Conference on Engineering Optimization (EngOpt 2014), Lisbon (2014)

    Google Scholar 

  11. Wurm, A., Bestle, D.: Robust design optimization for improving automotive shift quality. J. Optimiz. Eng. 17, 421–436 (2016)

    Article  Google Scholar 

  12. Hofmann, T., Brenner, T., Bestle, D.: Investigation of the disc deflection behavior of shim valves in vehicle shock absorbers. In: Proceedings of the WCX World Congress Experience, Detroit, SAE Technical Paper 2018-01-0701 (2018)

    Google Scholar 

  13. Poehlmann, F., Bestle, D.: Multi-objective compressor design optimization using multi-design transfer between codes of different fidelity. In: Proceedings of the ASME Turbo Expo, Copenhagen, GT2012-68577 (2012)

    Google Scholar 

  14. Otto, D., Bestle, D.: Multi-disciplinary blading design by means of multi-objective optimisation. In: Proceedings of the 1st European Air and Space Conference (CEAS), Berlin (2007)

    Google Scholar 

  15. Flassig, P.M., Dutta, A.K., Bestle, D.: Robuste Auslegung von Verdichterschaufeln. In: Proceedings of the Deutscher Luft- und Raumfahrtkongress, Darmstadt, DLRK2008-081174 (2008)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Part IV, pp. 1942–1948 (1995)

    Google Scholar 

  18. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Opt. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  19. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  Google Scholar 

  20. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2002)

    Google Scholar 

  21. Coello Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation (CEC 2002), pp. 1051–1056 (2002)

    Google Scholar 

  22. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE: A MATLAB Kriging Toolbox. Techn. Report IMM-TR-2002-12. Technical University of Denmark, Lyngby (2002)

    Google Scholar 

  23. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. University Press, Cambridge (2004)

    Google Scholar 

  24. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19, 497–509 (2007)

    Article  MathSciNet  Google Scholar 

  25. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Opt. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  26. Hartwig, L., Bestle, D.: Compressor blade design for stationary gas turbines using dimension reduced surrogate modeling. In: Proceedings of the IEEE Congress on Evoluationary Computation, Donostia, pp. 1595–1602 (2017)

    Google Scholar 

  27. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)

    Google Scholar 

  28. Amtsfeld, P., Lockan, M., Bestle, D., Meyer, M.: Accelerated 3D aerodynamic optimization of gas turbine blades. In: Proceedings of the SME Turbo EXPO, Düsseldorf, GT2014-25618 (2014)

    Google Scholar 

  29. Bucher, C.: Computational Analysis of Randomness in Structural Mechanics. Taylor & Francis, London (2009)

    Book  Google Scholar 

  30. Martin, I., Hartwig, L., Bestle, D.: A Multi-objective optimization framework for robust axial compressor airfoil design. Struct. Multidiscip. Optim. 59, 1935–1947 (2019)

    Article  Google Scholar 

  31. Beirow, B.: Grundlegende Untersuchungen zum Schwingungsverhalten von Verdichterlaufrädern in Integralbauweise, Habilitationsschrift. Shaker, Aachen (2009)

    Google Scholar 

  32. Martin, I., Bestle, D.: Automated eigenmode classification for airfoils in the presence of fixation uncertainties. Eng. Appl. Artif. Intell. 67, 187–196 (2018)

    Article  Google Scholar 

  33. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  34. DFG-Schwerpunktprogramm SPP 2353. Daring More Intelligence: Design Assistants in Mechanics and Dynamics, 2022–2025. https://gepris.dfg.de/gepris/projekt/460725022. Accessed 2022

  35. Heaven, D.: Why deep-learning AIs are so easy to fool. Nature 574, 163–166 (2019). https://doi.org/10.1038/d41586-019-03013-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bestle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bestle, D. (2024). Optimization Processes for Automated Design of Industrial Systems. In: Nachbagauer, K., Held, A. (eds) Optimal Design and Control of Multibody Systems. IUTAM 2022. IUTAM Bookseries, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-031-50000-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-50000-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49999-9

  • Online ISBN: 978-3-031-50000-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation