Geomorphological Analysis of the Ukhma River Basin from the Northern Foreland of Peninsular India

  • Chapter
  • First Online:
Rivers of India
  • 78 Accesses

Abstract

The present study is a report which highlights the efficiency and benefit of GIS and remote sensing for qualitative and quantitative assessment of detailed geomorphology of the Ukhma River Basin based on a morphometric investigation. The river Ukhma is a northwestern tributary of the Tons River in Central India, occupying an area of approximately 745 square kilometers within the Vindhyan group of rock. The river longitudinal profile and the study of basin lineaments provide the drainage dynamics of the Ukhma basin, implying that regional tectonics controlled the drainage pattern of the Ukhma river basin. The asymmetry factor of the Ukhma river indicates a displacement of the channel on the left side, that is, in the north direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Auden, J. B. (1933). Vindhyan sedimentation in the son valley, Mirzapur District. Memoirs of the Geological Survey of India, 62, 141–250.

    Google Scholar 

  • Babar, M. D. (2001). Hydrogeomorphological studies by remote sensing application in Akoli watershed (**tur) Parbhani dist., Maharashtra, India. Spatial Information Tech Remote sensing and GIS-ICORG, 2, 137–143.

    Google Scholar 

  • Babar, M. D. (2002). Application of remote sensing in Hydrogeomorphological studies of Purna River basin in Parbhani District, Maharashtra, India. Proceeding volume of the international symposium of ISPRS Commission VII on Resource and Environmental Monitoring, 34, 519–523.

    Google Scholar 

  • Babar, M. D. (2005). Hydrogeomorphology, fundamental applications and techniques (Vol. 1, p. 259). New India Publishing Agency.

    Book  Google Scholar 

  • Babar, M. D., & Kaplay, R. D. (1998). Geomorphometric analysis of Purna River basin Parbhani District (Maharashtra). Indian Journal of Geomorphology, 3, 29–39.

    Google Scholar 

  • Bali, R., Agarwal, K., Nawaz, S. N., Rastogi, S., & Krishna, K. (2012). Drainage morphometry of Himalayan glacio-fluvial basin, India- hydrologic and neotectonic implications. Environmental Earth Science, 66, 1163–1174.

    Article  Google Scholar 

  • Banerjee, A. K., & Singh, H. J. M. (1981). Plaeogeography and sedimentation of Vindhyans in eastern Rajasthan. Miscellaneous Publications of the Geological Survey of India, 50, 89–94.

    Google Scholar 

  • Bishop, P., Hoey, T. B., Jansen, J. D., & Artza, I. L. (2005). Knick point recession rate and catchment area: The case of uplifted rivers in eastern Scotland. Earth Surface Processes Landform, 30(6), 767–778.

    Article  Google Scholar 

  • Brocard, G. Y., van der Beek, P. A., Bourlès, D. L., Siame, L. L., & Mugnier, J. L. (2003). Long-term fluvial incision rates and postglacial river relaxation time in the French western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth and Planetary Sciences Letters, 209, 197–214.

    Article  CAS  Google Scholar 

  • Burbank, D. W., & Anderson, R. S. (2000). Tectonic geomorphology (p. 274). Blackwell Science.

    Google Scholar 

  • Chakraborty, C. (2006). Proterozoic intracontinental basin: The Vindhyan example. Journal of Earth System Science, 115(1), 3–22.

    Article  Google Scholar 

  • Chakraborty, P. P., Sarkar, S., & Bose, P. K. (1998). A viewpoint on intracratonic chenier evolution: Clue from a reappraisal of the Proterozoic Ganurgarh Shale, Central India. In B. S. Palliwal (Ed.), The Indian Precambrians (p. 61). Scientific Publishers.

    Google Scholar 

  • Chakraborty, T., & Chaudhuri, A. K. (1990). Stratigraphy of the late Proterozoic Rewa Group and palaeogeography of the Vindhyan basin in Central India during Rewa sedimentation. Journal of Geological Society of India, 36, 383–402.

    Google Scholar 

  • Clark, C. (1966). Morphometry from map, essay in geomorphology. Amer Else Publishing Company New York., 235–274.

    Google Scholar 

  • Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1–2), 56–86.

    Article  Google Scholar 

  • Cox, R. T., Van Arsdale, R. B., & Harris, J. B. (2001). Identification of possible quaternary deformation in the northeastern Mississippi embayment using quantitative geomorphic analysis of drainage-basin asymmetry. Geological Society of America Bulletin, 113(5), 615–624.

    Article  Google Scholar 

  • Cuong, N. Q., & Zuchiewicz, W. A. (2001). Morphotectonic properties of the Lo River fault near Tam Dao in North Vietnam. Natural Hazards and Earth System Sciences, 1, 15–22.

    Article  Google Scholar 

  • Duvall, A., Kirby, E., & Burbank, D. (2004). Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research, 109, 1–18.

    Article  Google Scholar 

  • Garde, R. J. (2006). River morphology. New Age International.

    Google Scholar 

  • Gregory, K. J., & Walling, D. E. (1973). Drainage basin form and process a geomorphological approach. Edward Arnold.

    Google Scholar 

  • Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. Unit States Geological Surface Professional Paper US Geological Survey, 294(B), 45.

    Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology. Geological Society American Bulletin, 56, 275–370.

    Article  Google Scholar 

  • Huggett, R., & Cheesman, J. (2002). Topography and the environment. Pearson Education.

    Google Scholar 

  • Jadhav, S. I., & Babar, M. D. (2014). Linear and aerial aspect of Basin morphometry of Kundka sub-basin of Sindphana Basin (Beed), Maharashtra, India. International Journal Geological Agriculture and Environmental Science, 2, 2348–2354.

    Google Scholar 

  • Kaila, K. L. (1986). Tectonic framework of Narmada–Son lineament: A continental rift system in central India from deep seismic soundings. In M. Brazangi & L. Brown (Eds.), Reflection seismology: A global perspective (Geodynamic series). AGU. 13 pp.

    Google Scholar 

  • Kaila, K. L., Murthy, P. R. K., & Mall, D. M. (1989). The evolution of the Vindhyan basin vis-à-vis the Narmada–Son lineament, Central India, from deep seismic soundings. Tectonophysics, 162, 277–289.

    Article  Google Scholar 

  • Kanhaiya, S., Singh, B. P., Singh, S., Mittal, P., & Srivastava, V. K. (2019a). Morphometric analysis, bed-load sediments, and weathering intensity in the Khurar River Basin, Central India. Geological Journal, 54, 466–481.

    Article  Google Scholar 

  • Kanhaiya, S., Singh, S., Singh, C. K., Srivastava, V. K., & Patra, A. (2019b). Geomorphic evolution of the Dongar River Basin, Son Valley, Central India. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1558019

    Book  Google Scholar 

  • Kanhaiya, S., Singh, S., Singh, C. K., & Srivastava, V. K. (2019c). Pothole: A unique geomorphological feature from the bedrocks of Ghaggar River, Son valley, India. Geology, Ecology, and Landscapes, 3(4), 258–268.

    Article  Google Scholar 

  • Kaplay, R. D., Babar, M. D., Panaskar, D. B., & Rakhe, A. M. (2004). Geomorphometric characteristics of 30th September 1993 Killari Earthquake Area, Maharashtra (India). Journal of Geophysics, 25, 55–61.

    Google Scholar 

  • Keller, E. A., & Pinter, N. (1996). Active tectonics (Vol. 1338). Prentice Hall.

    Google Scholar 

  • Kumar, A., Jayappa, K., & Deepika, B. (2011). Prioritization of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographic information system (GIS) techniques. Geocarto International, 26, 569–592.

    Article  Google Scholar 

  • Larue, J. P. (2008a). Effects of tectonics and lithology on long profiles of 16 rivers of the southern central Massif border between the Aude and the Orb (France). Geomorphology, 93, 343–367.

    Article  Google Scholar 

  • Larue, J. P. (2008b). Tectonic influence on the quaternary drainage evolution on the northwestern margin of the French Central Massif: The Cruese valley example. Geomorphology, 93, 398–420.

    Article  Google Scholar 

  • Leopold, L. B. (1969). Fluvial processes in geomorphology. Eurasia Publishing House.

    Google Scholar 

  • Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & **i, K. V. (2012). GIS based morphometric evaluation of Chimmini and Mupily watersheds, parts of Western Ghats, Thrissur District, Kerala, India. Earth Science Information, 5, 111–121.

    Article  Google Scholar 

  • Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. Journal of Geology, 73, 1–38.

    Article  Google Scholar 

  • Merritts, D., & Vincent, K. R. (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geological Society of America Bulletin, 101(11), 1373–1388.

    Article  Google Scholar 

  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Vol. 3). Columbia University.

    Google Scholar 

  • Miller, J. P. (1958). High mountaineous streams effect of geology on channel characteristics and bed material, Mem. New Maxi Bur Mines Mineral Resource.

    Book  Google Scholar 

  • Molin, P., Pazzaglia, F. J., & Dramis, F. (2004). Geomorphic expression of the active tectonics in a rapidly deforming forearc, sila Massif, Calabria, Southern Italy. American Journal of Science, 304, 559–589.

    Article  Google Scholar 

  • Mustafa, A. S. (2016). Drainage Basin morphometric analysis of Galagu Valley. Journal Applied and Industrial Science, 4, 2320–4609.

    Google Scholar 

  • Naqvi, S. M., & Rogers, J. J. W. (1987). Precambrian geology of India. Clarendon Press/Oxford University Press. 233p.

    Google Scholar 

  • Nur, A. (1982). The origin of tensile fracture lineaments. Journal of Structural Geology, 4(1), 31–40.

    Article  Google Scholar 

  • Pinter, N. (2005). Applications of tectonic geomorphology for deciphering active deformation in the Pannonian Basin, Hungary. In L. Fodor & K. Brezsnya’Nszky (Eds.), Proceedings of the workshop on “applications of GPS in plate tectonics in research on fossil energy resources and in earthquake hazard assessment”, occasional papers of the geological institute of Hungary (Vol. 204, pp. 25–51).

    Google Scholar 

  • Pophare, A. M., Lamsoge, B. R., Katpatal, Y. B., & Nawale, V. P. (2014). Impact of over-exploitation on groundwater quality: A case study from WR-2 watershed, India. Journal of Earth System Science, 123(7), 1541–1566.

    Article  Google Scholar 

  • Prakash, K., Singh, S., & Shukla, U. K. (2016a). Morphometric changes of the Varuna River basin, Varanasi district, Uttar Pradesh. Journal of Geomatics, 10, 48–54.

    Google Scholar 

  • Prakash, K., Mohanty, T., Singh, S., Chaubey, K., & Prakash, P. (2016b). Drainage morphometry of the Dhasan River basin, Bundelkhand Craton, Central India using remote sensing and GIS techniques. Journal of Geomatics, 10, 21–132.

    CAS  Google Scholar 

  • Prakash, K., Singh, S., Mohanty, T., Chaubey, K., & Singh, C. K. (2017). Morphometric assessment of Gomati River basin, middle Ganga plain. Spatial Information Research. https://doi.org/10.1007/s41324-017-0110-x

    Book  Google Scholar 

  • Prakash, K., Rawat, D., Singh, S., Chaubey, K., Kanhaiya, S., & Mohanty, T. (2019). Morphometric analysis using SRTM and GIS in synergy with depiction: A case study of the Karmanasa River basin, North central India. Applied Water Science. https://doi.org/10.1007/s13201-018-0887-3

    Book  Google Scholar 

  • Rai, P. K. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7, 217–232.

    Article  Google Scholar 

  • Rai, P. K., Mishra, S., Ahmad, A., & Mohan, K. (2014). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin India. Applied Water Science. https://doi.org/10.1007/s13201-014-0238-y

  • Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – A remote sensing and GIS approach. Journal of Applied Earth Observation and Geoinformatics, 6, 1–16.

    Article  Google Scholar 

  • Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process geomorphology wavel and press. In I. L. Long Grove, E. A. Keller, & N. Pinter (Eds.), Active tectonics: Earthquakes uplift and landscape (2nd ed., p. 362). Prentice Hall.

    Google Scholar 

  • Rogers, J. J. (1986). The Dharwar craton and the assembly of peninsular India. The Journal of Geology, 94(2), 129–143.

    Article  Google Scholar 

  • Roy, A., & Bandyopadhyay, B. K. (1990). Cleavage development in Mahakoshal group of rocks of Sleemanabad-Sihora area, Jabalpur District, Madhya Pradesh. Indian Miner, 44(2–3), 111–128.

    Google Scholar 

  • Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometryusing remote sensing and GIS techniques in the sub-basins of Kagna River Basin, Gulbarga district, Karnataka, India. Journal of Indian Society of Remote Sensing, 36, 351–360.

    Article  Google Scholar 

  • Schumm, S. A. (1986). Alluvial river response to active tectonics. Active Tectonics, 80–94.

    Google Scholar 

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of American Bulletin, 67, 597–646.

    Article  Google Scholar 

  • Shukla, T., Verma, A., Adnan, A., Pandey, M., & Shukla, U. K. (2014). Scarp sandstone: An example of estuarine sedimentation within the Mesoproterozoic Kaimur Group of the Vindhyan Basin, (Mirzapur, U.P.) India. Journal of Paleontological Society of India, 59, 45–58.

    Google Scholar 

  • Singh, P., Thakur, J., & Singh, U. C. (2013). Morphometric analysis of Morar River basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Science, 68, 1967–1977.

    Article  Google Scholar 

  • Singh, S., & Kanhaiya, S. (2015). Morphometry of the Barakar River Basin, India. International Journal of Current Research, 7(7), 17948–17955.

    Google Scholar 

  • Singh, S., Kanhaiya, S., Singh, A., & Chaubey, K. (2018a). Drainage network characteristics of the Ghaggar River Basin (GRB), Son Valley, India. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1525670

  • Singh, S., Kumar, S., Mittal, P., Kanhaiya, S., Prakash, P., & Kumar, R. (2018b). Drainage Basin parameters of Bagh River, a sub-basin of Narmada River, Central India: Analysis and Implications. Journal of Applied Geochemistry, 20(1), 91–102.

    Google Scholar 

  • Singh, S., Prakash, K., & Shukla, U. K. (2020). Spatiotemporal migration of the River Ganga in middle Ganga Plane: Application of remote sensing and GIS technique. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-020-01170-z

  • Singh, S., Singh, A. K., Kumar, P., & Jaiswal, M. K. (2021). Morphotectonic analysis of the Bihar River, Madhya Pradesh, India. In Proceedings of the Indian national science academy, 87, 163–174

    Google Scholar 

  • Singh, S., Kanhaiya, S., Kumar, S., & Yadav, S. K. (2022). Spatial and temporal variation in NDVI and NDWI of the Ukhma River Basin, Central India. Journal of Scientific Research, 66(3), 62–65

    Google Scholar 

  • Snow, R. S., & Slingerland, R. L. (1990). Stream profile adjustment to crustal war**: Nonlinear results from a simple model. Geology, 98, 699–708.

    Google Scholar 

  • Solangi, G. S., Siyal, A. A., & Siyal, P. (2019a). Analysis of Indus Delta groundwater and surface water suitability for domestic and irrigation purposes. Civil Engineering Journal, 5(7), 1599–1608.

    Article  Google Scholar 

  • Solangi, G. S., Siyal, A. A., & Siyal, P. (2019b). Spatiotemporal dynamics of land surface temperature and its impact on the vegetation. Civil Engineering Journal, 5(8), 1753–1763.

    Article  Google Scholar 

  • Sreedevi, P. D., Owais, S., Khan, H., & Ahmed, S. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of Geological Society of India, 73, 543–552.

    Article  Google Scholar 

  • Sreedevi, P. D., Subrahmanyam, K., & Shakeel, A. (2004). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geological, 47, 412–420.

    Google Scholar 

  • Srivastava, D. C., & Sahay, A. (2003). Brittle tectonics and pore-fluid conditions in the evolution of the great boundary fault around Chittaurgarh, northwestern India. Journal of Structural Geology, 25, 1713–1733.

    Article  Google Scholar 

  • Stock, J. D., & Montgomery, D. R. (1999). Geologic constraints on bedrock river incision using the stream power law. Journal of Geophysical Research: Solid Earth, 104, 4983–4993.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  • Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geological Society of American Bulletin, 69, 279–300.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Section 4ii in Handbook applied hydrology 4–39 to 4–76.

    Google Scholar 

  • Tewari, H. C., Murthy, A. S. N., Kumar, P., & Sridhar, A. R. (2001). A tectonic model of the Narmada region. Current Science, 80, 873–878.

    Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3, 135–156.

    Article  Google Scholar 

  • Vandenberghe, J. (2002). The relation between climate and river processes, landforms and deposits during the quaternary. Quaternary International, 91(1), 17–23.

    Article  Google Scholar 

  • Verma, A., & Shukla, U. K. (2020). Heterolithic lower Rewa sandstone of the Neoproterozoic Rewa group, Vindhyan Basin, U. P., India: An example of tidal point bar. Precambrian Research, 350, 105932. https://doi.org/10.1016/j.precamres.2020.105932

    Article  CAS  Google Scholar 

  • Verma, P. K. (1996). Evolution and age of the great boundary fault of Rajasthan. Geological Society of India Memoirs, 36, 197–212.

    Google Scholar 

  • Verma, R. K. (1991). Geodynamics of the Indian Peninsula and the Indian plate margin. Oxford and IBH. 357pp.

    Google Scholar 

  • Vittala, S. S., Govindiah, S., & Honne, G. H. (2004). Morphometric analysis of sub-watersheds in the pavagada area of Tumkur district, South India, using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 32, 351–362.

    Article  Google Scholar 

  • Waikar, M. L. (2014). Morphometric analysis of a Drainage Basin using geographical information system: A case study. International Journal of Multidisciplinary and Current Research, 2, 180–184.

    Google Scholar 

Download references

Acknowledgments

S. Singh is thankful to the SERB (Project No. PDF/2018/004148), New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaubey, K., Singh, S., Kanhaiya, S., Singh, P. (2024). Geomorphological Analysis of the Ukhma River Basin from the Northern Foreland of Peninsular India. In: Kanhaiya, S., Singh, S., Dixit, A., Singh, A.K. (eds) Rivers of India. Springer, Cham. https://doi.org/10.1007/978-3-031-49163-4_14

Download citation

Publish with us

Policies and ethics

Navigation