Application of Compounds with Pyrochlore Structure in Photocatalysis

  • Chapter
  • First Online:
Pyrochlore Oxides

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 174 Accesses

Abstract

Currently, the activity of various photocatalytic systems in the degradation processes is studied using a large number of diverse organic substances as model pollutants (synthetic dyes, antibiotics, alcohols, aldehydes, aromatic compounds, etc.). Chapter 4 is devoted to the use of pyrochlore oxides in various photocatalytic reactions, namely degradation of organic pollutants, water splitting and CO2 reduction. Much attention is also paid to the reactions mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026

    Google Scholar 

  2. Nazri MKHM, Sapawe N (2020) A short review on photocatalytic toward dye degradation. Mater Today: Proc 31:A42–A47

    Google Scholar 

  3. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B: Environ 49(1):1–14

    Google Scholar 

  4. Anliker R (1979) Ecotoxicology of dyestuffs—a joint effort by industry. Ecotoxicol Environ Saf 3(1):59–74

    Google Scholar 

  5. Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L (2021) Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 275:130104

    Google Scholar 

  6. Liu H, Wang C, Wang G (2020) Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective. Chem Asian J 15(20):3239–3253

    Google Scholar 

  7. Rodionov IA, Zvereva IA (2016) Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ Chem Rev 85(3):248–279

    Google Scholar 

  8. Houas A (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Environ 31(2):145–157

    Google Scholar 

  9. Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1998) TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl Catal B: Environ 15(1–2):147–156

    Google Scholar 

  10. Galindo C, Jacques P, Kalt A (2000) Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. J Photochem Photobiol A: Chem 130(1):35–47

    Google Scholar 

  11. Fox MA, Dulay MT (2002) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Google Scholar 

  12. Zhu H, Jiang R, Fu Y, Guan Y, Yao J, **ao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48

    Google Scholar 

  13. Alaton IA, Balcioglu IA, Bahnemann DW (2002) Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res 36(5):1143–1154

    Google Scholar 

  14. Tunesi S, Anderson M (2002) Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes. J Phys Chem 95(8):3399–3405

    Google Scholar 

  15. Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211(1–3):72–86

    Google Scholar 

  16. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber J-V (2002) Photocatalytic decomposition of humic acids on TiO2. J Photochem Photobiol A: Chem 152(1–3):267–273

    Google Scholar 

  17. Hufschmidt D, Bahnemann D, Testa JJ, Emilio CA, Litter MI (2002) Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. J Photochem Photobiol A: Chem 148(1–3):223–231

    Google Scholar 

  18. Bizani E, Fytianos K, Poulios I, Tsiridis V (2006) Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J Hazard Mater 136(1):85–94

    Google Scholar 

  19. Kormann C, Bahnemann DW, Hoffmann MR (2002) Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ Sci Technol 25(3):494–500

    Google Scholar 

  20. Luan J, Shen Y, Zhang L, Guo N (2016) Property characterization and photocatalytic activity evaluation of BiGdO3 nanoparticles under visible light irradiation. Int J Mol Sci 17(9):1441

    Google Scholar 

  21. Sun H, Shang Y, Xu K, Tang Y, Li J, Liu Z (2017) MnO2 aerogels for highly efficient oxidative degradation of Rhodamine B. RSC Adv 7(48):30283–30288

    Google Scholar 

  22. Rafieezadeh M, Kianfar AH (2021) Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation. Environ Technol Innov 23:101756

    Google Scholar 

  23. Piriyanon J, Takhai P, Patta S, Chankhanittha T, Senasu T, Nijpanich S, Juabrum S, Chanlek N, Nanan S (2021) Performance of sunlight responsive WO3/AgBr heterojunction photocatalyst toward degradation of Rhodamine B dye and ofloxacin antibiotic. Opt Mater 121:111573

    Google Scholar 

  24. Matthews RW (1987) Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase. Sol Energy 38(6):405–413

    Google Scholar 

  25. Yu C, Li G, Wei L, Fan Q, Shu Q, Yu JC (2014) Fabrication, characterization of β-MnO2 microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catal Today 224:154–162

    Google Scholar 

  26. Hou J, Jiao S, Zhu H, Kumar RV (2011) Bismuth titanate pyrochlore microspheres: directed synthesis and their visible light photocatalytic activity. J Solid State Chem 184(1):154–158

    Google Scholar 

  27. Kaviyarasu K, Maria Magdalane C, Jayakumar D, Samson Y, Bashir AKH, Maaza M, Letsholathebe D, Mahmoud AH, Kennedy J (2020) High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J King Saud Univ Sci 32(2):1516–1522

    Google Scholar 

  28. Jayaraman V, Ayappan C, Palanivel B, Mani A (2020) Bridging and synergistic effect of the pyrochlore like Bi2Zr2O7 structure with robust CdCuS solid solution for durable photocatalytic removal of the organic pollutants. RSC Adv 10(15):8880–8894

    Google Scholar 

  29. Wang Q, Cheng X, Li J, ** H (2016) Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles. J Photochem Photobiol A: Chem 321:48–54

    Google Scholar 

  30. Wu C, Shen Q, Yu L, Huang F, Zhang C, Sheng J, Zhang F, Cheng D, Yang H (2020) A facile template-free synthesis of Bi2Sn2O7 with flower-like hierarchical architecture for enhanced visible-light photocatalytic activity. New J Chem 44(26):11196–11202

    Google Scholar 

  31. Wang W, Liang S, Bi J, Yu JC, Wong PK, Wu L (2014) Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln=Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: synthesis, characterization, and photocatalytic properties. Mater Res Bull 56:86–91

    Google Scholar 

  32. Yao W (2004) Photocatalytic property of bismuth titanate Bi2Ti2O7. Appl Catal A: Gen 259(1):29–33

    Google Scholar 

  33. Wei W, Dai Y, Huang B (2009) First-principles characterization of Bi-based photocatalysts: Bi12TiO20, Bi2Ti2O7, and Bi4Ti3O12. J Phys Chem C 113(14):5658–5663

    Google Scholar 

  34. Benčina M, Valant M (2018) Bi2Ti2O7-based pyrochlore nanoparticles and their superior photocatalytic activity under visible light. J Am Ceram Soc 101(1):82–90

    Google Scholar 

  35. Kumar V, Sharma R, Kumar S, Kaur M, Sharma JD (2019) Enhancement in the photocatalytic activity of Bi2Ti2O7 nanopowders synthesised via Pechini vs Co-Precipitation method. Ceram Int 45(16):20386–20395

    Google Scholar 

  36. Krasnov AG, Napalkov MS, Vlasov MI, Koroleva MS, Shein IR, Piir IV (2020) Photocatalytic properties of Bi2–xTi2O7–1.5x (x = 0, 0.5) pyrochlores: hybrid DFT calculations and experimental study. Inorg Chem 59(17):12385–12396

    Google Scholar 

  37. Krasnov AG, Koroleva MS, Vlasov MI, Shein IR, Piir IV, Kellerman DG (2019) Ab Initio and experimental insights on structural, electronic, optical, and magnetic properties of Cr-doped Bi2Ti2O7. Inorg Chem 58(15):9904–9915

    Google Scholar 

  38. Liu B, Mo Q, Zhu J, Hou Z, Peng L, Tu Y, Wang Q (2016) Synthesis of Fe and N Co-doped Bi2Ti2O7 nanofiber with enhanced photocatalytic activity under visible light irradiation. Nanoscale Res Lett 11(1):391

    Google Scholar 

  39. Shi H, Tan H, Zhu W-B, Sun Z, Ma Y, Wang E (2015) Electrospun Cr-doped Bi4Ti3O12/Bi2Ti2O7 heterostructure fibers with enhanced visible-light photocatalytic properties. J Mater Chem A 3(12):6586–6591

    Google Scholar 

  40. Samu GF, Veres Á, Endrődi B, Varga E, Rajeshwar K, Janáky C (2017) Bandgap-engineered quaternary MxBi2−xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: solution combustion synthesis, characterization, and photocatalysis. Appl Catal B: Environ 208:148–160

    Google Scholar 

  41. Liu W-W, Peng R-F (2020) Recent advances of bismuth oxychloride photocatalytic material: property, preparation and performance enhancement. J Electron Sci Technol 18(2):100020

    Google Scholar 

  42. Zhang L, Li Y, Li Q, Fan J, Carabineiro SAC, Lv K (2021) Recent advances on bismuth-based photocatalysts: strategies and mechanisms. Chem Eng J 419:129484

    Google Scholar 

  43. Pham KV, Nguyen VH, Nguyen DP, Do DB, Le MO, Luc HH (2017) Hydrothermal synthesis, photocatalytic performance, and phase evolution from BiOCl to Bi2Ti2O7 in the Bi-Ti-Cl-O system. J Electron Mater 46(12):6829–6833

    Google Scholar 

  44. Niu S, Zhang R, Zhang Z, Zheng J, Jiao Y, Guo C (2019) In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity. Inorg Chem Front 6(3):791–798

    Google Scholar 

  45. Zhong Y, Chang J-Q, Hu C-H, Zhou J (2020) Fabrication of novel heterostructured catalyst Ag@AgCl/Bi2Ti2O7 and its excellent visible light photocatalytic performance. J Mol Struct 1222:128938

    Google Scholar 

  46. Zhang W, Tao Y, Li C (2018) Sol-gel synthesize and characterization of χGd2Ti2O7/SiO2 photocatalyst for ofloxacin decomposition. Mater Res Bull 105:55–62

    Google Scholar 

  47. Li X, Yang J, Zhang Y, Zhang W (2020) Polyethylene glycol in sol-gel precursor to prepare porous Gd2Ti2O7: enhanced photocatalytic activity on reactive brilliant red X-3B degradation. Mater Sci Semicond Process 117:105181

    Google Scholar 

  48. Zhang W, Ma Z, Du L, Li H (2017) Role of PEG4000 in sol-gel synthesis of Sm2Ti2O7 photocatalyst for enhanced activity. J Alloy Compd 704:26–31

    Google Scholar 

  49. Navas J, Sánchez-Coronilla A, Aguilar T, De los Santos DM, Hernández NC, Alcántara R, Fernández-Lorenzo C, Martín-Calleja J (2014) Thermo-selective TmxTi1−xO2−x/2 nanoparticles: from Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application. Nanoscale 6(21):12740–12757

    Google Scholar 

  50. Sobhani-Nasab A, Behpour M, Rahimi-Nasrabadi M, Ahmadi F, Pourmasoud S, Sedighi F (2019) Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason Sonochemistry 50:46–58

    Google Scholar 

  51. Lee J. CK, Wen Z (2018) Pathways for greening the supply of rare earth elements in China. Nat Sustain 1(10):598–605

    Google Scholar 

  52. Coles G. SV, Bond SE, Williams G (1994) Metal stannates and their role as potential gas-sensing elements. J Mater Chem 4(1):23–27

    Google Scholar 

  53. Lewis JW, Payne JL, Evans IR, Stokes HT, Campbell BJ, Evans JSO (2016) An exhaustive symmetry approach to structure determination: phase transitions in Bi2Sn2O7. J Am Chem Soc 138(25):8031–8042

    Google Scholar 

  54. Walsh A, Watson GW (2007) Polymorphism in bismuth stannate: a first-principles study. Chem Mater 19(21):5158–5164

    Google Scholar 

  55. Salamat A, Hector AL, McMillan PF, Ritter C (2011) Structure, bonding, and phase relations in Bi2Sn2O7 and Bi2Ti2O7 pyrochlores: new insights from high pressure and high temperature studies. Inorg Chem 50(23):11905–11913

    Google Scholar 

  56. **ng Y, Que W, Yin X, Liu X, Javed H. MA, Yang Y, Kong LB (2015) Fabrication of Bi2Sn2O7-ZnO heterostructures with enhanced photocatalytic activity. RSC Adv 5(35):27576–27583

    Google Scholar 

  57. Li D, Xue J (2015) Synthesis of Bi2Sn2O7 and enhanced photocatalytic activity of Bi2Sn2O7 hybridized with C3N4. New J Chem 39(7):5833–5840

    Google Scholar 

  58. Wu X-F, Sun Y, Li H, Wang Y-J, Zhang C-X, Zhang J-R, Su J-Z, Wang Y-W, Zhang Y, Wang C, Zhang M (2018) In-situ synthesis of novel p-n heterojunction of Ag2CrO4-Bi2Sn2O7 hybrids for visible-light-driven photocatalysis. J Alloy Compd 740:1197–1203

    Google Scholar 

  59. Guo H, Niu C-G, Zhang L, Wen X-J, Liang C, Zhang X-G, Guan D-L, Tang N, Zeng G-M (2018) Construction of direct Z-scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: accelerated interfacial charge transfer induced efficient Cr(VI) reduction, tetracycline degradation and escherichia coli inactivation. ACS Sustain Chem Eng 6(6):8003–8018

    Google Scholar 

  60. Zhao X, Lv X, Cui H, Wang T (2017) Preparation of bismuth stannate/silver@silver chloride film samples with enhanced photocatalytic performance and self-cleaning ability. J Colloid Interface Sci 507:260–270

    Google Scholar 

  61. Shen J-C, Zeng H-Y, Chen C-R, Xu S (2021) Novel plasmonic p-n heterojunction Ag-Ag2CO3/Bi2Sn2O7 photocatalyst for Cr(VI) reduction. J Taiwan Inst Chem Eng 120:106–115

    Google Scholar 

  62. Jayaraman V, Palanivel B, Ayappan C, Chellamuthu M, Mani A (2019) CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants. Sep Purif Technol 224:405–420

    Google Scholar 

  63. Gagarin PV (2018) Thermodynamic functions of compounds and solid solutions of lanthanide oxides and zirconium dioxide. Moscow, 156 p

    Google Scholar 

  64. Gohar RS, Ehsan MF, Karamat N, Najam-Ul-Haq M, Shah A, Nisar J, Qureshi AM, Ashiq MN (2020) Photomineralization of untreated wastewater by a novel LaCeZr2O7–SnSe nanocomposite as a visible light driven heterogeneous photocatalyst. Solid State Sci 106:106305

    Google Scholar 

  65. Mansingh S, Acharya R, Martha S, Parida KM (2018) Pyrochlore Ce2Zr2O7 decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys Chem Chem Phys 20(15):9872–9885

    Google Scholar 

  66. Jayaraman V, Mani A (2020) Interfacial coupling effect of high surface area pyrochlore like Ce2Zr2O7 over 2D g-C3N4 sheet photoactive material for efficient removal of organic pollutants. Sep Purif Technol 235:116242

    Google Scholar 

  67. He Y, Zhu Y (2004) Solvothermal synthesis of sodium and potassium tantalate perovskite nanocubes. Chem Lett 33(7):900–901

    Google Scholar 

  68. Zhang G, Jiang W, Yu S (2010) Preparation, characterization and photocatalytic property of nanosized K–Ta mixed oxides via a sol–gel method. Mater Res Bull 45(11):1741–1747

    Google Scholar 

  69. Krukowska A, Trykowski G, Lisowski W, Klimczuk T, Winiarski MJ, Zaleska-Medynska A (2018) Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation. J Catal 364:371–381

    Google Scholar 

  70. Krukowska A, Winiarski MJ, Strychalska-Nowak J, Klimczuk T, Lisowski W, Mikolajczyk A, Pinto HP, Puzyn T, Grzyb T, Zaleska-Medynska A (2018) Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV–vis light activity. Appl Catal B: Environ 224:451–468

    Google Scholar 

  71. Zhu S, Fu H, Zhang S, Zhang L, Zhu Y (2008) Two-step synthesis of a novel visible-light-driven K2Ta2O6−xNx catalyst for the pollutant decomposition. J Photochem Photobiol A: Chem 193(1):33–41

    Google Scholar 

  72. Reddy JR, Ravi G, Veldurthi NK, Velchuri R, Pola S, Vithal M, Sreedhar B (2013) Sol-gel synthesis and photocatalytic study of visible light active N-doped KSbWO6. Z Anorg Allg Chem 639(5):794–798

    Google Scholar 

  73. Ravi G, Shrujana P, Palla S, Reddy JR, Guje R, Velchuri R, Vithal M (2014) Enhanced photoactivity in nitrogen‐doped KM0.33W1.67O6 (M = Al and Cr). Micro Nano Lett 9(1):11–15

    Google Scholar 

  74. Fukina DG, Suleimanov EV, Boryakov AV, Zubkov SY, Koryagin AV, Volkova NS, Gorshkov AP (2021) Structure analysis and electronic properties of ATe4+0.5Te6+1.5–xM6+xO6 (A=Rb, Cs, M6+=Mo, W) solid solutions with β-pyrochlore structure. J Solid State Chem 293:121787

    Google Scholar 

  75. Fukina DG, Koryagin AV, Koroleva AV, Zhizhin EV, Suleimanov EV, Kirillova NI (2021) Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. J Solid State Chem 300:122235

    Google Scholar 

  76. Fukina DG, Koryagin AV, Koroleva AV, Zhizhin EV, Suleimanov EV, Volkova NS, Kirillova NI (2022) The role of surface and electronic structure features of the CsTeMoO6 β-pyrochlore compound during the photooxidation dyes process. J Solid State Chem 308:122939

    Google Scholar 

  77. Fukina DG, Koryagin AV, Volkova NS, Suleimanov EV, Kuzmichev VV, Mitin AV (2022) Features of the electronic structure and photocatalytic properties under visible light irradiation for RbTe1.5W0.5O6 with β-pyrochlore structure. Solid State Sci 126:106858

    Google Scholar 

  78. Semenycheva L, Chasova V, Matkivskaya J, Fukina D, Koryagin A, Belaya T, Grigoreva A, Kursky Y, Suleimanov E (2021) Features of polymerization of methyl methacrylate using a photocatalyst—the complex oxide RbTe1.5W0.5O6. J Inorg Organomet Polym Mater 31(8):3572–3583

    Google Scholar 

  79. Semenycheva LL, Chasova VO, Fukina DG, Koryagin AV, Valetova NB, Suleimanov EV (2022) Synthesis of polymethyl-methacrylate–collagen-graft copolymer using a complex oxide RbTe1.5W0.5O6 photocatalyst. Polym Sci, Series D 15(1):110–117

    Google Scholar 

  80. Corrigan N, Shanmugam S, Xu J, Boyer C (2016) Photocatalysis in organic and polymer synthesis. Chem Soc Rev 45(22):6165–6212

    Google Scholar 

  81. Wu C, Corrigan N, Lim C.-H, Liu W, Miyake G, Boyer C (2022) Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem Rev 122(6):5476–5518

    Google Scholar 

  82. Weiss M, Wirth B, Marschall R (2020) Photoinduced defect and surface chemistry of niobium tellurium oxides ANbTeO6 (A = K, Rb, Cs) with defect-pyrochlore structure. Inorg Chem 59(12):8387–8395

    Google Scholar 

  83. Wu W, Xuan Y, ** Y, Liang X, Meng S, Chen M (2018) Construction of Novel CdS/SnNb2O6 heterojunctions with enhanced photocatalytic degradation activity under visible light. Eur J Inorg Chem 2018(44):4812–4818

    Google Scholar 

  84. Huang P, Shen Y, Luan J (2019) Visible‐light‐driven p–n Type BiMSbO6 (M=Ti, Sn)/BiOBr heterojunction photocatalyst toward degradation of levofloxacin. ChemistrySelect 4(39):11531–11540

    Google Scholar 

  85. Mafa PJ, Ntsendwana B, Mamba BB, Kuvarega AT (2019) Visible light driven ZnMoO4/BiFeWO6/rGO Z-scheme photocatalyst for the degradation of anthraquinonic dye. J Phys Chem C 123(33):20605–20616

    Google Scholar 

  86. Zheng Z, Zhang N, Wang T, Chen G, Qiu X, Ouyang S, Mei Z, Liu X, Ma R (2019) Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Appl Surf Sci 487:82–90

    Google Scholar 

  87. Kubelka P (1948) New contribution to the optics of intensely light-scattering materials. J Opt Soc Am 38:448–457

    Google Scholar 

  88. Kubelka P, Munk F (1931) A contribution to the optics of paint coatings. Z Techn Phys 12:593–601

    Google Scholar 

  89. (1974) Amorphous and liquid semiconductors. Plenum, London, New York, 441 p

    Google Scholar 

  90. Kumar Gupta N, Viltres H, Sandeep Rao K, Achary SN (2022) Pyrochlores ceramics: properties, processing, and applications. Elsiver

    Google Scholar 

  91. Zhao H, Pan F, Li Y (2017) A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. J Mater 3:17–32

    Google Scholar 

  92. Gorshkov AP, Volkova NS, Fukina DG, Levichev SB, Istomin LA (2021) Impurity defect absorption and photochromic effect in KNbWO6. J Solid State Chem 298:122099

    Google Scholar 

  93. Qian R, Zong H, Schneider J (2019) Charge carrier trap**, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90

    Google Scholar 

  94. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556

    Google Scholar 

  95. Bernas A, Ferradini C, Jay-Gerin J-P (1997) On the electronic structure of liquid water: facts and reflections. Chem Phys 222:151–160

    Google Scholar 

  96. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078

    Google Scholar 

  97. Park K-W, Kolpak AM (2019) Optimal methodology for explicit solvation prediction of band edges of transition metal oxide photocatalysts. Comm Chem 2(79):1–10

    Google Scholar 

  98. Greiner MT, Helander MG, Tang W.-M, Wang Z-B, Qiu J, Lu Z-H (2012) Universal energy-level alignment of molecules on metal oxides. Nat Mat 11:76–87

    Google Scholar 

  99. Butler MA, Ginley DS (1977) Correlation of photosensitive electrode properties with electronegativity. Chem Phys Lett 47(2):319–321

    Google Scholar 

  100. Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO3. J Appl Phys 48(5):1914–1920

    Google Scholar 

  101. Butler MA, Ginley DS (1978) Prediction of flatband potentials at semiconductor−electrolyte interfaces from atomic electronegativities. J Electrochem Soc 125(2):228–232

    Google Scholar 

  102. Zahedi E, Hojamberdiev M (2017) A first–principles study on polar hexagonal Cs2TeM3O12 (M = W, Mo): new visible–light responsive photocatalyst. J Solid State Chem 252:129–137

    Google Scholar 

  103. Chiu Y-H, Chang T-FM, Chen C-Y, Sone M, Hsu Y-J (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9:430

    Google Scholar 

  104. Talebian N, Nilforoushan MR (2010) Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue. Thin Solid Films 518(8):2210–221

    Google Scholar 

  105. Fukina DG, Koryagin AV, Titaev DN, Suleimanov EV, Kirillova NI, Boryakov AV, Mitin AV (2022) The photocatalytic oxidation ability of Rb0.9Nb1.625Mo0.375O5.62 with classic β-pyrochlore structure. Eur J Inorg Chem 2022(28):e202200371

    Google Scholar 

  106. Wang L, Shuxin O, Bofan R, **hua Y, Wang D (2015) Enhanced photocatalytic degradation of 2-propanol over macroporus GaN/ZnO solid solution prepared by a novel sol-gel method. APL Mater 3:104414

    Google Scholar 

  107. Nosaka Y, Nosaka A (2016) Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett 1(2):356–359

    Google Scholar 

  108. Lee S-K, Mills A (2003) Novel photochemistry of leuco-methylene blue. Chem Commun, 2366–2367

    Google Scholar 

  109. Rauf MA, Meetani MA, Ahmed AKA (2010) Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378

    Google Scholar 

  110. Zhou S, Du Z, Li X, Zhang Y, He Y, Zhang Y (2019) Degradation of methylene blue by natural manganese oxides: kinetics and transformation products. R Soc Open Sci 6:190351

    Google Scholar 

  111. Luo YR (2005) Handbook of bond dissociation energies in organic compounds. Science Press

    Google Scholar 

  112. Ildefonso ZT, De Jesús PBJ, Yunueth TLC, Luis LR, Luisa MLM, Yunny MV (2016) A phenomenon of degradation of methyl orange observed during the reaction of NH4TiOF3 nanotubes with the aqueous medium to produce TiO2 anatase nanoparticles. RSC Adv 6:76167–76173

    Google Scholar 

  113. Huang S, Zhang J, Qin Y, Song F, Du C, Su Y (2021) Direct Z-scheme SnO2/Bi2Sn2O7 photocatalyst for antibiotics removal: insight on the enhanced photocatalytic performance and promoted charge separation mechanism. J Photochem Photobiol A: Chem 404:112947

    Google Scholar 

  114. Yin X, Li X, Gu W, Wang F, Zou Y, Sun S, Fu Z, Lu Y (2017) Enhanced photocatalytic activities of g-C3N4 via hybridization with a Bi–Fe–Nb-containing ferroelectric pyrochlore. ACS Appl Mater Interfaces 9(23):19908–19916

    Google Scholar 

  115. Radha R, Kumar R, Sakar M, Balakumar S (2018) Understanding the lattice composition directed in situ structural disorder for enhanced visible light photocatalytic activity in Bismuth iron niobate pyrochlore. Appl Catal B: Environ 225:386–396

    Google Scholar 

  116. Wang X, Liu L, An H, Zhong Y, Wang D, Tang C, Hu C (2019) (Sr0.6Bi0.305)2Bi2O7 as a new visible-light-responsive photocatalyst: an experimental and theoretical study. Mater Res Bull 118:110484

    Google Scholar 

  117. Wang X, Hu C, An H, Zhu D, Zhong Y, Wang D, Tang C, Sun L, Zhou H (2021) Photocatalytic removal of MB and hydrogen evolution in water by (Sr0.6Bi0.305)2Bi2O7/TiO2 heterostructures under visible-light irradiation. Appl Surf Sci 544:148920

    Google Scholar 

  118. Sales AJM, Melo BMG, Soreto Teixeira S, Devesa S, Oliveira RGM, Oliveira PWS, Vasconcelos SJT, Graça MPF, Costa LC, Sombra ASB (2021) Influence of pyrochlore phase on the dielectric properties of the bismuth niobate system. Mater Sci Eng: B 263:114880

    Google Scholar 

  119. Waehayee A, Watthaisong P, Wannapaiboon S, Chanlek N, Nakajima H, Wittayakun J, Suthirakun S, Siritanon T (2020) Effects of different exchanging ions on the band structure and photocatalytic activity of defect pyrochlore oxide: a case study on KNbTeO6. Catal Sci Technol 104:978–992

    Google Scholar 

  120. Wang T, Lang J, Zhao Y, Su Y, Zhao Y, Wang X (2015) Simultaneous do** and heterojunction of silver on Na2Ta2O6 nanoparticles for visible light driven photocatalysis: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity. CrystEngComm 17(35):6651–6660

    Google Scholar 

  121. Kozlova EA (2018) Heterogeneous semiconductor suspended photocatalysts for hydrogen production from aqueous solutions of electron donors. Novosibirsk, 332 p

    Google Scholar 

  122. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86

    Google Scholar 

  123. Zamaraev KI, Parmon VN (2006) Potential methods and perspectives of solar energy conversion via photocatalytic processes. Catal Rev 22(2):261–324

    Google Scholar 

  124. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Google Scholar 

  125. Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 6(27):12876–12931

    Google Scholar 

  126. Raizada P, Kumar A, Hasija V, Singh P, Thakur VK, Khan AAP (2021) An overview of converting reductive photocatalyst into all solid-state and direct Z-scheme system for water splitting and CO2 reduction. J Ind Eng Chem 93:1–27

    Google Scholar 

  127. Nguyen V-H, Nguyen B-S, ** Z, Shokouhimehr M, Jang HW, Hu C, Singh P, Raizada P, Peng W, Shiung Lam S, **a C, Nguyen CC, Kim SY, Le QV (2020) Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J 402:126184

    Google Scholar 

  128. Kozlova EA, Parmon VN (2017) Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev 86(9):870–906

    Google Scholar 

  129. Li X, Yu J, Low J, Fang Y, **ao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3(6):2485–2534

    Google Scholar 

  130. Teixeira I, Quiroz J, Homsi M, Camargo P (2020) An overview of the photocatalytic H2 evolution by semiconductor-based materials for nonspecialists. J Braz Chem Soc 31(2):211–229

    Google Scholar 

  131. Lei W, Wang F, Pan X, Ye Z, Lu B (2022) Z-scheme MoO3–2D SnS nanosheets heterojunction assisted g-C3N4 composite for enhanced photocatalytic hydrogen evolutions. Int J Hydrog Energy 47(20):10877–10890

    Google Scholar 

  132. **e Z, Chen J, Chen Y, Wang T, Jiang X, **e Y, Lu C-Z (2022) A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 579:152003

    Google Scholar 

  133. Jayachitra S, Ravi P, Murugan P, Sathish M (2022) Supercritically exfoliated Bi2Se3 nanosheets for enhanced photocatalytic hydrogen production by topological surface states over TiO2. J Colloid Interface Sci 605:871–880

    Google Scholar 

  134. Sun S, Ren D, Yang M, Cui J, Yang Q, Liang S (2022) In-situ construction of direct Z-scheme sea-urchin-like ZnS/SnO2 heterojunctions for boosted photocatalytic hydrogen production. Int J Hydrog Energy 47(15):9201–9208

    Google Scholar 

  135. Zhou W-C, Zhang W-D (2022) Anchoring nickel complex to g-C3N4 enables an efficient photocatalytic hydrogen evolution reaction through ligand-to-metal charge transfer mechanism. J Colloid Interface Sci 616:791–802

    Google Scholar 

  136. Markovskaya DV, Kozlova EA, Cherepanova SV, Saraev AA, Gerasimov EY, Parmon VN (2016) Synthesis of Pt/Zn(OH)2/Cd0.3Zn0.7S for the photocatalytic hydrogen evolution from aqueous solutions of organic and inorganic electron donors under visible light. Top Catal 59(15–16):1297–1304

    Google Scholar 

  137. Muniyappa M, Kalegowda SN, Shetty M, Sriramoju JB, Shastri M, SV NR, De D, Shankar MV, Rangappa D (2022) Cocatalyst free nickel sulphide nanostructure for enhanced photocatalytic hydrogen evolution. Int J Hydrog Energy 47(8):5307–5318

    Google Scholar 

  138. Reddy CV, Reddy KR, Shetti NP, Shim J, Aminabhavi TM, Dionysiou DD (2020) Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–a review. Int J Hydrog Energy 45(36):18331–18347

    Google Scholar 

  139. Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P (2019) Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem Soc Rev 48(15):4178–4280

    Google Scholar 

  140. Bian H, Li D, Yan J, Liu S (2021) Perovskite–a wonder catalyst for solar hydrogen production. J Energy Chem 57:325–340

    Google Scholar 

  141. Wang S, Zhang J, Li B, Sun H, Wang S (2021) Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: a review. Energy Fuels 35(8):6504–6526

    Google Scholar 

  142. Tasleem S, Tahir M, Khalifa WA (2021) Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: a review. Int J Hydrog Energy 46(27):14148–14189

    Google Scholar 

  143. Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A (2004) Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5s2 electron configuration. Chem Lett 33(1):28–29

    Google Scholar 

  144. Ikeda S, Itani T, Nango K, Matsumura M (2004) Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure. Catal Lett 98(4):229–233

    Google Scholar 

  145. Wang X-S, Zhou C, Shi R, Liu Q-Q, Zhang T-R (2019) Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Metals 38(5):397–403

    Google Scholar 

  146. Zhou C, Shi R, Shang L, Wu L-Z, Tung C-H, Zhang T (2018) Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2 evolution activity. Chin J Catal 39(3):395–400

    Google Scholar 

  147. Kiss B, Didier C, Johnson T, Manning TD, Dyer MS, Cowan AJ, Claridge JB, Darwent JR, Rosseinsky MJ (2014) Photocatalytic water oxidation by a pyrochlore oxide upon irradiation with visible light: rhodium substitution into yttrium titanate. Angew Chem Int Ed 53(52):14480–14484

    Google Scholar 

  148. Gupta S, De Leon L, Subramanian V (2014) Mn-modified Bi2Ti2O7 photocatalysts: bandgap engineered multifunctional photocatalysts for hydrogen generation. Phys Chem Chem Phys 16(25):12719–12727

    Google Scholar 

  149. Ruiz-Gómez MA, Torres-Martínez LM, Figueroa-Torres MZ, Moctezuma E, Juárez-Ramírez I (2013) Hydrogen evolution from pure water over a new advanced photocatalyst Sm2GaTaO7. Int J Hydrog Energy 38(28):12554–12561

    Google Scholar 

  150. Torres-Martínez LM, Ruíz-Gómez MA, Moctezuma E (2017) Features of crystalline and electronic structures of Sm2MTaO7 (M=Y, In, Fe) and their hydrogen production via photocatalysis. Ceram Int 43(5):3981–3992

    Google Scholar 

  151. Zhou C, Shi R, Shang L, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H, Zhang T (2017) A sustainable strategy for the synthesis of pyrochlore H4Nb2O7 hollow microspheres as photocatalysts for overall water splitting. ChemPlusChem 82(2):181–185

    Google Scholar 

  152. Li Y, Cao T, Mei Z, Li X, Sun D (2020) Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production. J Phys Chem Solids 142:109457

    Google Scholar 

  153. Huang K, Li C, Li H, Ren G, Wang L, Wang W, Meng X (2020) Photocatalytic applications of two-dimensional Ti3C2 MXenes: a review. ACS Appl Nano Mater 3(10):9581–9603

    Google Scholar 

  154. Li K, Zhang S, Li Y, Fan J, Lv K (2021) MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin J Catal 42(1):3–14

    Google Scholar 

  155. Hieu VQ, Phung TK, Nguyen T-Q, Khan A, Doan VD, Tran VA, Le VT (2021) Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light. Chemosphere 276:130154

    Google Scholar 

  156. Su T, Hood ZD, Naguib M, Bai L, Luo S, Rouleau CM, Ivanov IN, Ji H, Qin Z, Wu Z (2019) 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 11(17):8138–8149

    Google Scholar 

  157. Zhao D, Cai C (2019) Layered Ti3C2 MXene modified two-dimensional Bi2WO6 composites with enhanced visible light photocatalytic performance. Mater Chem Front 3(11):2521–2528

    Google Scholar 

  158. Wang H, Zhao R, Qin J, Hu H, Fan X, Cao X, Wang D (2019) MIL-100(Fe)/Ti3C2 MXene as a schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities. ACS Appl Mater Interfaces 11(47):44249–44262

    Google Scholar 

  159. Wang B, Wang M, Liu F, Zhang Q, Yao S, Liu X, Huang F (2020) Ti3C2: an ideal co‐catalyst? Angew Chem Int Ed 59(5):1914–1918

    Google Scholar 

  160. Schwertmann L, Wark M, Marschall R (2013) Sol–gel synthesis of defect-pyrochlore structured CsTaWO6 and the tribochemical influences on photocatalytic activity. RSC Adv 3(41):18908–18915

    Google Scholar 

  161. Weller T, Sann J, Marschall R (2016) Pore structure controlling the activity of mesoporous crystalline CsTaWO6 for photocatalytic hydrogen generation. Adv Energy Mater 6(16):1600208

    Google Scholar 

  162. Weller T, Specht L, Marschall R (2017) Single crystal CsTaWO6 nanoparticles for photocatalytic hydrogen production. Nano Energy 31:551–559

    Google Scholar 

  163. Hu C-C Yeh T-F, Teng H (2013) Pyrochlore-like K2Ta2O6 synthesized from different methods as efficient photocatalysts for water splitting. Catal Sci Technol 3(7):1798–1804

    Google Scholar 

  164. Marschall R, Mukherji A, Tanksale A, Sun C, Smith SC, Wang L, Lu GQ (2011) Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. J Mater Chem 21(24):8871–8879

    Google Scholar 

  165. Mukherji A, Marschall R, Tanksale A, Sun C, Smith SC, Lu GQ, Wang L (2011) N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation. Adv Funct Mater 21(1):126–132

    Google Scholar 

  166. G R, Palla S, Veldurthi NK, J.R R, A HP, M V (2014) Solar water-splitting with the defect pyrochlore type of oxides KFe0.33W1.67O6 and Sn0.5Fe0.33W1.67O6·xH2O. Int J Hydrog Energy 39(28):15352–15361

    Google Scholar 

  167. Weiss M, Bredow T, Marschall R (2018) The influence of Tin(II) incorporation on visible light absorption and photocatalytic activity in defect‐pyrochlores. Chemistry A Eur J 24(69):18535–18543

    Google Scholar 

  168. Weiß M (2021) Optimisation of the photocatalytic activity of defect-pyrochlores, especially in visible light. Universität Bayreuth, Bayreuth, 180 p

    Google Scholar 

  169. Weiss M, Hoerner G, Weber B, Marschall R (2022) The elemental multifariousness of the defect-pyrochlore crystal structure and application in photocatalytic hydrogen generation. Energy Technol 10:2100302

    Google Scholar 

  170. Belousov AS, Suleimanov EV (2021) Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chem 23(17):6172–6204

    Google Scholar 

  171. Belousov AS, Esipovich AL, Kanakov EA, Otopkova KV (2021) Recent advances in sustainable production and catalytic transformations of fatty acid methyl esters. Sustain Energy Fuels 5(18):4512–4545

    Google Scholar 

  172. Mustafa A, Lougou BG, Shuai Y, Wang Z, Tan H (2020) Current technology development for CO2 utilization into solar fuels and chemicals: a review. J Energy Chem 49:96–123

    Google Scholar 

  173. M.S R, Shanmuga Priya S, Freudenberg NC, Sudhakar K, Tahir M (2021) Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: a review on progress and application. J CO2 Util 43:101374

    Google Scholar 

  174. Qin D, Zhou Y, Wang W, Zhang C, Zeng G, Huang D, Wang L, Wang H, Yang Y, Lei L, Chen S, He D (2020) Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: insights into performance, theories and perspective. J Mater Chem A 8(37):19156–19195

    Google Scholar 

  175. Kovačič Ž, Likozar B, Huš M (2020) Photocatalytic CO2 reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 10(24):14984–15007

    Google Scholar 

  176. Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y (2016) Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal 6(2):1097–1108

    Google Scholar 

  177. Huang Z, Teramura K, Asakura H, Hosokawa S, Tanaka T (2018) Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. Curr Opin Chem Eng 20:114–121

    Google Scholar 

  178. Hu B, Guo Q, Wang K, Wang X (2019) Enhanced photocatalytic activity of porous In2O3 for reduction of CO2 with H2O. J Mater Sci: Mater Electron 30(8):7950–7962

    Google Scholar 

  179. Akimov AV, Asahi R, **nouchi R, Prezhdo OV (2015) What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: insights from nonadiabatic molecular dynamics. J Am Chem Soc 137(35):11517–11525

    Google Scholar 

  180. Li S, Bai L, Ji N, Yu S, Lin S, Tian N, Huang H (2020) Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J Mater Chem A 8(18):9268–9277

    Google Scholar 

  181. Sommers JM, Alderman NP, Viasus CJ, Gambarotta S (2017) Revisiting the behaviour of BiVO4 as a carbon dioxide reduction photo-catalyst. Dalton Trans 46(19):6404–6408

    Google Scholar 

  182. Walker RJ, Pougin A, Oropeza FE, Villar-Garcia IJ, Ryan MP, Strunk J, Payne DJ (2015) Surface termination and CO2 adsorption onto bismuth pyrochlore oxides. Chem Mater 28(1):90–96

    Google Scholar 

  183. Muraoka K, Kumagai H, Eguchi M, Ishitani O, Maeda K (2016) A Z-scheme photocatalyst constructed with an yttrium–tantalum oxynitride and a binuclear Ru(ii) complex for visible-light CO2 reduction. Chem Commun 52(50):7886–7889

    Google Scholar 

  184. Muraoka K, Eguchi M, Ishitani O, Cheviré F, Maeda K (2021) Selective CO2 reduction into formate using Ln–Ta oxynitrides combined with a binuclear Ru(II) complex under visible light. J Energy Chem 55:176–182

    Google Scholar 

  185. Zeng X, Chen Y, Jiao S, Fang Z, Wang B, Pang G, Feng S (2018) Sn-doped defect pyrochlore oxide KNbWO6·H2O microcrystals and their photocatalytic reduction of CO2. New J Chem 42(8):5753–5758

    Google Scholar 

  186. Chen S, Pan B, Zeng L, Luo S, Wang X, Su W (2017) La2Sn2O7 enhanced photocatalytic CO2 reduction with H2O by deposition of Au co-catalyst. RSC Adv 7(23):14186–14191

    Google Scholar 

  187. Shao X, Yin X, Wang J (2018) Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol. J Colloid Interface Sci 512:466–473

    Google Scholar 

  188. Karamat N, Ashiq MN, Joya KS, Ijaz S, Sharif M, Ehsan MF, Sher M, Ul‐Haq N (2019) Nanoscale LaDySn2O7/SnSe composite for visible‐light driven photoreduction of CO2 to methane and for Monoazo dyes photodegradation. ChemistrySelect 4(39):11511–11517

    Google Scholar 

  189. Gao X, Guo B, Guo C, Meng Q, Liang J, Liu J (2020) Zirconium-based metal–organic framework for efficient photocatalytic reduction of CO2 to CO: the influence of doped metal ions. ACS Appl Mater Interfaces 12(21):24059–24065

    Google Scholar 

  190. Dao X-Y, Guo J-H, Zhang X-Y, Wang S-Q, Cheng X-M, Sun W-Y (2020) Structure-dependent iron-based metal–organic frameworks for selective CO2-to-CH4 photocatalytic reduction. J Mater Chem A 8(48):25850–25856

    Google Scholar 

  191. Huang L, Li B, Su B, **ong Z, Zhang C, Hou Y, Ding Z, Wang S (2020) Fabrication of hierarchical Co3O4@CdIn2S4 p–n heterojunction photocatalysts for improved CO2 reduction with visible light. J Mater Chem A 8(15):7177–7183

    Google Scholar 

  192. Wang Q, Chen Y, Liu X, Li L, Du L, Tian G (2021) Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction. Chem Eng J 421:129968

    Google Scholar 

  193. Chen L, Huang K, **e Q, Lam SM, Sin JC, Su T, Ji H, Qin Z (2021) The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal Sci Technol 11(4):1602–1614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belousov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belousov, A.S., Fukina, D.G. (2024). Application of Compounds with Pyrochlore Structure in Photocatalysis. In: Fukina, D.G., Belousov, A.S., Suleimanov, E.V. (eds) Pyrochlore Oxides. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-46764-6_4

Download citation

Publish with us

Policies and ethics

Navigation