Bayesian Uncertainty-Weighted Loss for Improved Generalisability on Polyp Segmentation Task

  • Conference paper
  • First Online:
Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging (CLIP 2023, EPIMI 2023, FAIMI 2023)

Abstract

While several previous studies have devised methods for segmentation of polyps, most of these methods are not rigorously assessed on multi-center datasets. Variability due to appearance of polyps from one center to another, difference in endoscopic instrument grades, and acquisition quality result in methods with good performance on in-distribution test data, and poor performance on out-of-distribution or underrepresented samples. Unfair models have serious implications and pose a critical challenge to clinical applications. We adapt an implicit bias mitigation method which leverages Bayesian epistemic uncertainties during training to encourage the model to focus on underrepresented sample regions. We demonstrate the potential of this approach to improve generalisability without sacrificing state-of-the-art performance on a challenging multi-center polyp segmentation dataset (PolypGen) with different centers and image modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    C1-5-SEQ and C6-SEQ data are referred to as DATA3 and DATA4, respectively, in [2].

  2. 2.

    https://github.com/sharib-vision/PolypGen-Benchmark.

References

  1. Abbasi-Sureshjani, S., Raumanns, R., Michels, B.E.J., Schouten, G., Cheplygina, V.: Risk of training diagnostic algorithms on data with demographic bias. In: Cardoso, J., et al. (eds.) IMIMIC/MIL3ID/LABELS -2020. LNCS, vol. 12446, pp. 183–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61166-8_20

    Chapter  Google Scholar 

  2. Ali, S., Ghatwary, N., Jha, D., Isik-Polat, E., Polat, G., Yang, o.: Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge. ar**v preprint: ar**v:2202.12031 (2022)

  3. Ali, S., et al.: A multi-centre polyp detection and segmentation dataset for generalisability assessment. Sci. Data 10(1), 75 (2023)

    Article  MathSciNet  Google Scholar 

  4. Amini, A., Soleimany, A.P., Schwarting, W., Bhatia, S.N., Rus, D.: Uncovering and mitigating algorithmic bias through learned latent structure. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 289–295 (2019)

    Google Scholar 

  5. Branchaud-Charron, F., Atighehchian, P., Rodríguez, P., Abuhamad, G., Lacoste, A.: Can active learning preemptively mitigate fairness issues? ar**v preprint: ar**v:2104.06879 (2021)

  6. Burlina, P., Joshi, N., Paul, W., Pacheco, K.D., Bressler, N.M.: Addressing artificial intelligence bias in retinal diagnostics. Transl. Vis. Sci. Technol. 10(2), 13–13 (2021)

    Article  Google Scholar 

  7. Cao, S., Zhang, Z.: Deep hybrid models for out-of-distribution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4733–4743 (2022)

    Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  9. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  10. Du, M., Mukherjee, S., Wang, G., Tang, R., Awadallah, A., Hu, X.: Fairness via representation neutralization. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12091–12103 (2021)

    Google Scholar 

  11. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  12. Gonzalez, C., Gotkowski, K., Bucher, A., Fischbach, R., Kaltenborn, I., Mukhopadhyay, A.: Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 304–314. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_29

    Chapter  Google Scholar 

  13. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Jungo, A., Balsiger, F., Reyes, M.: Analyzing the quality and challenges of uncertainty estimations for brain tumor segmentation. Front. Neurosci. 14, 282 (2020)

    Article  Google Scholar 

  15. Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance with uncertainty. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 103–112 (2019)

    Google Scholar 

  16. Kim, N., Hwang, S., Ahn, S., Park, J., Kwak, S.: Learning debiased classifier with biased committee. ar**v preprint: ar**v:2206.10843 (2022)

  17. Li, X., Cui, Z., Wu, Y., Gu, L., Harada, T.: Estimating and improving fairness with adversarial learning. ar**v preprint: ar**v:2103.04243 (2021)

  18. Mahmud, T., Paul, B., Fattah, S.A.: PolypSegNet: a modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Comput. Biol. Med. 128, 104119 (2021)

    Article  Google Scholar 

  19. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)

    Article  Google Scholar 

  20. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  21. Nam, J., Cha, H., Ahn, S., Lee, J., Shin, J.: Learning from failure: De-biasing classifier from biased classifier. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20673–20684 (2020)

    Google Scholar 

  22. Pezeshki, M., Kaba, O., Bengio, Y., Courville, A.C., Precup, D., Lajoie, G.: Gradient starvation: a learning proclivity in neural networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 1256–1272 (2021)

    Google Scholar 

  23. Puyol-Antón, E., et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 413–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_39

    Chapter  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: CheXclusion: fairness gaps in deep chest X-ray classifiers. In: BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, pp. 232–243. World Scientific (2020)

    Google Scholar 

  26. Shen, Z., et al.: Towards out-of-distribution generalization: a survey. ar**v preprint: ar**v:2108.13624 (2021)

  27. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  29. Srivastava, A., et al.: MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation. IEEE J. Biomed. Health Inform. 26(5), 2252–2263 (2022)

    Article  Google Scholar 

  30. Stone, R.S., Ravikumar, N., Bulpitt, A.J., Hogg, D.C.: Epistemic uncertainty-weighted loss for visual bias mitigation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2898–2905 (2022)

    Google Scholar 

  31. Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9322–9331 (2020)

    Google Scholar 

  32. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688. Citeseer (2011)

    Google Scholar 

  33. Xu, X., et al.: Consistent instance false positive improves fairness in face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 578–586 (2021)

    Google Scholar 

  34. Yeung, M., Sala, E., Schönlieb, C.B., Rundo, L.: Focus U-Net: a novel dual attention-gated CNN for polyp segmentation during colonoscopy. Comput. Biol. Med. 137, 104815 (2021)

    Article  Google Scholar 

  35. Zhang, R., Li, C., Zhang, J., Chen, C., Wilson, A.G.: Cyclical stochastic gradient MCMC for Bayesian deep learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

Download references

Acknowledgements

R. S. Stone is supported by Ezra Rabin scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rebecca S. Stone or Sharib Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stone, R.S., Chavarrias-Solano, P.E., Bulpitt, A.J., Hogg, D.C., Ali, S. (2023). Bayesian Uncertainty-Weighted Loss for Improved Generalisability on Polyp Segmentation Task. In: Wesarg, S., et al. Clinical Image-Based Procedures, Fairness of AI in Medical Imaging, and Ethical and Philosophical Issues in Medical Imaging. CLIP EPIMI FAIMI 2023 2023 2023. Lecture Notes in Computer Science, vol 14242. Springer, Cham. https://doi.org/10.1007/978-3-031-45249-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45249-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45248-2

  • Online ISBN: 978-3-031-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation