Effects of Fluoroquinolone Exposure to Growth and Morphology in Staphylococcus aureus

  • Conference paper
  • First Online:
9th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2022)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 95))

  • 221 Accesses

Abstract

Under exposure to fluoroquinolone (FQ) stressors, Staphylococcus aureus generates resistance through adaptive responses via alterations of target enzymes, efflux pumps, morphology, or general gene expression and mutation. This study examined the effects of continuous FQs exposure on the growth and morphology of bacterial colonies and cells. S. aureus ATCC 29213 and six FQ-exposed strains, which were induced through in vitro exposing S. aureus ATCC 29213 to sub-MIC value of ciprofloxacin (CIP), ofloxacin (OFL), and levofloxacin (LEV) were included in the study. Growth of these seven S. aureus strains in Luria-Bertani broth (LB), Mueller-Hinton broth (MHB), and Nutrient broth (NB) was investigated using plate counting method while light microscope and scanning electron microscope were used to identify changes in colony and cell morphology. Regarding growth analysis, most FQ-exposed S. aureus showed significantly lower growth rates in LB and MHB but higher in NB compared to the initial strain. Besides, nearly all FQ-exposed S. aureus experienced a decrease by about 28% in normal-colony perimeter and attained a roughly 22% increase in single-cell size compared to the initial strain. The percentage of small colony variants (SCV) of most FQ-exposed strains increased compared to the initial S. aureus. This study suggested that the adaptive response mechanisms to FQ exposure are associated with changes in the bacterial metabolism which resulted in a decrease of growth in nutrient-rich medium but an increase in nutrient-less one. Besides, S. aureus decreased its normal colony perimeter but increased the SCV and single-cell size percentage under serial exposure to FQs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morikawa, K., Maruyama, A., Inose, Y., et al.: Overexpression of sigma factor, sigma(B), urges Staphylococcus aureus to thicken the cell wall and to resist beta-lactams. Biochem. Biophys. Res. Commun. 288, 385–389 (2001). https://doi.org/10.1006/BBRC.2001.5774

    Article  Google Scholar 

  2. Klevens, R.M., Morrison, M.A., Nadle, J., et al.: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007). https://doi.org/10.1001/JAMA.298.15.1763

    Article  Google Scholar 

  3. Burda, W.N., Miller, H.K., Krute, C.N., et al.: Investigating the genetic regulation of the ECF sigma factor σs in Staphylococcus aureus. BMC Mi-crobiol 14, 1–17 (2014). https://doi.org/10.1186/S12866-014-0280-9/FIGURES/7

    Article  Google Scholar 

  4. Gade, N.D., Qazi, M.S.: Fluoroquinolone therapy in staphylococcus aureus infections: where do we stand? J. Lab Physicians 5, 109–112 (2013). https://doi.org/10.4103/0974-2727.119862

    Article  Google Scholar 

  5. Hooper, D.C., Jacoby, G.A.: Mechanisms of drug resistance: quinolone resistance. Ann. N. Y. Acad. Sci. 1354, 12–31 (2015). https://doi.org/10.1111/NYAS.12830

    Article  Google Scholar 

  6. Pontes, M.H., Groisman, E.A.: Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal 12 (2019). https://doi.org/10.1126/SCISIGNAL.AAX3938

  7. Ender, M., McCallum, N., Adhikari, R., Berger-Bachi, B.: Fitness cost of SCCmec and methicillin re-sistance levels in Staphylococcus aureus. Antimicrob Agents Chemother 48, 2295–2297 (2004). https://doi.org/10.1128/AAC.48.6.2295-2297.2004

  8. Andersson, D.I., Hughes, D.: Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology 8(4), 260–271 (2010). https://doi.org/10.1038/nrmicro2319

  9. Monteiro, A.S., Neto, W.R.N., Mendes, A.R.S., et al.: Effects of alterations in staphylococcus aureus cell membrane and cell wall in antimicrobial resistance. The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus (2017). https://doi.org/10.5772/66954

  10. Thai, V.C., Lim, T.K., Le, K.P.U., et al.: ITRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus. J. Glob. Antimicrob Resist. 8, 82–89 (2017). https://doi.org/10.1016/J.JGAR.2016.11.003

    Article  Google Scholar 

  11. Pepper, I.L., Gerba, C.P.: Environmental Microbiology: a Laboratory Manual. 209 (2005)

    Google Scholar 

  12. Loss, G., Simões, P.M., Valour, F., et al.: Staphylococcus aureus small colony variants (SCVs): news from a chronic prosthetic joint infection. Front. Cell. Infect. Microbiol. 9, 363 (2019). https://doi.org/10.3389/FCIMB.2019.00363/FULL

    Article  Google Scholar 

  13. Raju, S., Rao, G., Patil, S.A., Kelmani, C.R.: Increase in cell size and acid tolerance response in a stepwise-adapted methicillin resistant Staphylo-coccus aureus mutant. World Journal of Microbiology and Biotechnology 23(9), 1227–1232 (2007). https://doi.org/10.1007/S11274-007-9352-4

  14. Melter, O., Radojevič, B.: Small colony variants of Staphylococcus aureus–review. Folia Microbiol. (Praha) 55, 548–558 (2010). https://doi.org/10.1007/S12223-010-0089-3

    Article  Google Scholar 

  15. Hooper, D.C.: Mechanisms of action and resistance of older and newer fluoroquinolones. Clin. Infect. Dis. 31(Suppl 2), S24S28 (2000) https://doi.org/10.1086/314056

  16. Luria Bertani Broth, M.: HIMEDIA. https://himedialabs.com/TD/M1245.pdf. Accessed 22 Oct 2021

  17. Paulander, W., Maisnier-Patin, S., Andersson, D.I.: The Fitness Cost of Streptomycin Resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539 (2009). https://doi.org/10.1534/GENETICS.109.106104

    Article  Google Scholar 

  18. Clements, M.O., Foster, S.J.: Stress resistance in staphylococcus aure-us. Trends Microbiol. 7, 458–462 (1999). https://doi.org/10.1016/S0966-842X(99)01607-8

    Article  Google Scholar 

  19. O’Hara, G.W., Glenn, A.R.: The adaptive acid tolerance response in root nodule bacteria and Escherichia coli. Archives of Microbiology 161(4), 286–292 (1994). https://doi.org/10.1007/BF00303582

  20. Ritz, M., Tholozan, J.L., Federighi, M., Pilet, M.F.: Morphological and physiological characterization of listeria monocytogenes subjected to high hydrostatic pressure. Appl. Environ. Microbiol. 67, 2240–2247 (2001). https://doi.org/10.1128/AEM.67.5.2240-2247.2001/ASSET/CECFE622-7CD6-4155-8534-1A6E1F130979/ASSETS/GRAPHIC/AM0511278006.JPEG

    Article  Google Scholar 

  21. Fields, S.D., Conrad, M.N., Clarke, M.: The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mito-chondrial morphology and distribution. J. Cell Sci. 111, 1717–1727 (1998). https://doi.org/10.1242/JCS.111.12.1717

    Article  Google Scholar 

  22. Heipieper, H.J., Weber, F.J., Sikkema, J., et al.: Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409–415 (1994). https://doi.org/10.1016/0167-7799(94)90029-9

    Article  Google Scholar 

  23. Diarra, M.S., Petitclerc, D., Lacasse, P.: Effect of lactoferrin in combination with penicillin on the morphology and the physiology of staphylococcus aureus isolated from bovine mastitis. J. Dairy Sci. 85, 1141–1149 (2002). https://doi.org/10.3168/JDS.S0022-0302(02)74176-3

    Article  Google Scholar 

  24. Thorsing, M., Klitgaard, J.K., Atilano, M.L., et al.: Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300. PLoS One 8 (2013). https://doi.org/10.1371/JOURNAL.PONE.0064518

  25. Braga, P.C., Sasso, M.D., Maci, S.: Cefodizime: effects of sub-inhibitory concentrations on adhesiveness and bacterial morphology of Staphylo-coccus aureus and Escherichia coli: comparison with cefotaxime and ceftriaxone. J. Antimicrobial Chemotherapy 39, 79–84 (1997). https://doi.org/10.1093/JAC/39.1.79

  26. Li, G., Qiao, M., Guo, Y., et al.: Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus. Foodborne Pathog. Dis. 11, 677–683 (2014). https://doi.org/10.1089/FPD.2013.1731

    Article  Google Scholar 

  27. Kang, S., Sunwoo, K., Jung, Y., et al.: Membrane-targeting tri-phenylphosphonium functionalized ciprofloxacin for methicillin-resistant staphylococcus aureus (MRSA). Antibiotics (Basel) 9, 1–16 (2020). https://doi.org/10.3390/ANTIBIOTICS9110758

    Article  Google Scholar 

  28. Zhang, X., Sun, X., Wu, J., et al.: Berberine damages the cell surface of methicillin-resistant staphylococcus aureus. Front Microbiol. 11 (2020). https://doi.org/10.3389/FMICB.2020.00621

  29. Chen, J., Zhou, H., Huang, J., et al.: Virulence alterations in staphylo-coccus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J. Adv. Res. 31, 165 (2021). https://doi.org/10.1016/J.JARE.2021.01.008

    Article  Google Scholar 

  30. Atalla, H., Gyles, C., Mallard, B.: Staphylococcus aureus small colony variants (SCVs) and their role in disease. Anim. Health Res. Rev. 12, 33–45 (2011). https://doi.org/10.1017/S1466252311000065

    Article  Google Scholar 

  31. Kahl, B.C., Becker, K., Löffler, B.: Clinical significance and pathogen-esis of staphylococcal small colony variants in persistent infections. Clin. Microbiol. Rev. 29, 401 (2016). https://doi.org/10.1128/CMR.00069-15

    Article  Google Scholar 

  32. Travers, K., Barza, M.: Morbidity of infections caused by antimicrobial-resistant bacteria. Clin. Infect. Dis. 34, S131–S134 (2002). https://doi.org/10.1086/340251

    Article  Google Scholar 

  33. Vien, L.T.M., Minh, N.N.Q., Thuong, T.C., et al.: The co-selection of fluo-roquinolone resistance genes in the gut flora of vietnamese children. PLoS ONE 7, e42919 (2012). https://doi.org/10.1371/JOURNAL.PONE.0042919

    Article  Google Scholar 

Download references

Acknowledgment

The research topic was supported by The Youth Incubator for Science and Technology Programme, managed by Youth Promotion Science and Technology Center - Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “34/2022/ HĐ-KHCNT-VU” signed on 30th, December 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thu Hoai Nguyen .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 209 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, V.N., Tran, M.K., Huynh, T.Q., Nguyen, T.T.H. (2024). Effects of Fluoroquinolone Exposure to Growth and Morphology in Staphylococcus aureus. In: Vo, V.T., Nguyen, TH., Vong, B.L., Le, N.B., Nguyen, T.Q. (eds) 9th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2022. IFMBE Proceedings, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-44630-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44630-6_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44629-0

  • Online ISBN: 978-3-031-44630-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation