Blood Clotting Complications in Dialysis

  • Chapter
  • First Online:
Complications in Dialysis
  • 267 Accesses

Abstract

Dialysis was not practical until the development of heparin, and to this day, it is the mainstay anticoagulant used in therapy. Therapy increases antithrombin activity, thus preventing clotting. Clot formation is the end result of two cascading processes, one related to external injury and the other an intrinsic system to prevent abnormal internal thrombus formation, particularly when the vessel wall is damaged. These mechanisms rely on a series of serine protease enzymes to activate downstream “factors.” Platelets are critically packaged to carry granules that are essential for clotting, and the timing of their release enables the platelet plug that precedes the clot. Vitamin K is a cofactor that factors II, VII, IX, and X depend on. Calcium is also essential for clot formation. Platelets, vitamin K, and calcium may be disordered in kidney disease. Toxins that comprise the uremic milieu can also either exacerbate or impede normal homeostasis. Clotting and inflammation are linked, and the increased oxidants associated with kidney disease play a role in clotting disorders. Hemodialysis patients are unique in that they are dependent on anticoagulants, may have disorders in calcium metabolism, and may have dialyzer-induced platelet aggregation. Several disorders commonly seen in dialysis patients require management that targets either calcium, vitamin K, platelets, or specific serine protease factors. The arteriovenous access is particularly vulnerable to thrombosing, and regular surveillance is necessary for early detection. Everyday disorders like atrial fibrillation react differently to standard therapy in dialysis patients. A recent clinical trial did not support the use of direct oral anticoagulants (DOACs) in dialysis-based atrial fibrillation, and other studies have had variable results. Head trauma is particularly common in dialysis patients. The increased risks of falling make the use of anticoagulants a major concern when designing management strategies for elderly dialysis patients. Any unwitnessed fall should lead to the suspicion of a potential intracranial bleeding episode. Other major adverse consequences related to dialysis, particularly when anticoagulants are necessary, include gastrointestinal bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benedum J. The early history of the artificial kidney. Anasthesiol Intensivmed Notfallmed Schmerzther. 2003;38(11):681–8. https://doi.org/10.1055/s-2003-43386.

    Article  CAS  PubMed  Google Scholar 

  2. Howell WH. The purification of heparin and its presence in blood. Am J Phys. 1925;71(3):553–62. https://doi.org/10.1152/ajplegacy.1925.71.3.553.

    Article  Google Scholar 

  3. Ong CS, Marcum JA, Zehr KJ, Cameron DE. A century of heparin. Ann Thorac Surg. 2019;108(3):955–8. https://doi.org/10.1016/j.athoracsur.2019.03.104.

    Article  PubMed  Google Scholar 

  4. Murray GD, Best CH. The use of heparin in thrombosis. Ann Surg. 1938;108(2):163–77. https://doi.org/10.1097/00000658-193808000-00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lutz J, Menke J, Sollinger D, Schinzel H, Thürmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2013;29(1):29–40. https://doi.org/10.1093/ndt/gft209.

    Article  CAS  PubMed  Google Scholar 

  6. Osterud B, Rapaport SI. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci U S A. 1977;74(12):5260–4. https://doi.org/10.1073/pnas.74.12.5260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11–8. https://doi.org/10.1182/blood-2008-02-078170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain N, Corken A, Kumar A, Davis C, Ware J, Arthur J. Role of platelets in chronic kidney disease. J Am Soc Nephrol. 2021;32(7):1551–8. https://doi.org/10.1681/asn.2020121806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat Med. 1996;2(7):814–7. https://doi.org/10.1038/nm0796-814.

    Article  CAS  PubMed  Google Scholar 

  10. Chi G, Gibson CM, Liu Y, Hernandez AF, Hull RD, Cohen AT, et al. Inverse relationship of serum albumin to the risk of venous thromboembolism among acutely ill hospitalized patients: analysis from the APEX trial. Am J Hematol. 2019;94(1):21–8. https://doi.org/10.1002/ajh.25296.

    Article  CAS  PubMed  Google Scholar 

  11. McCabe KM, Adams MA, Holden RM. Vitamin K status in chronic kidney disease. Nutrients. 2013;5(11):4390–8. https://doi.org/10.3390/nu5114390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy-Schousboe K, Marckmann P, Frimodt-Møller M, Peters CD, Kjærgaard KD, Jensen JD, et al. Vitamin K supplementation and bone mineral density in dialysis: results of the double-blind, randomised, placebo-controlled RenaKvit trial. Nephrol Dial Transplant. 2022;2022:gfac315. https://doi.org/10.1093/ndt/gfac315.

    Article  Google Scholar 

  13. Ezihe-Ejiofor JA, Hutchinson N. Anticlotting mechanisms 1: physiology and pathology. Contin Educ Anaesth Crit Care Pain. 2013;13(3):87–92. https://doi.org/10.1093/bjaceaccp/mks061.

    Article  Google Scholar 

  14. Blossom DB, Kallen AJ, Patel PR, Elward A, Robinson L, Gao G, et al. Outbreak of adverse reactions associated with contaminated heparin. N Engl J Med. 2008;359(25):2674–84. https://doi.org/10.1056/NEJMoa0806450.

    Article  CAS  PubMed  Google Scholar 

  15. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for hemodialysis in patients with end-stage renal failure: a meta-analysis of randomized trials. J Am Soc Nephrol. 2004;15(12):3192–206. https://doi.org/10.1097/01.Asn.0000145014.80714.35.

    Article  PubMed  Google Scholar 

  16. Fatima H, Nwankwo I, Anam M, Maharjan S, Amjad Z, Abaza A, et al. Safety and efficacy of apixaban vs warfarin in patients with stage 4 and 5 chronic kidney disease: a systematic review. Cureus. 2022;14(10):e30230. https://doi.org/10.7759/cureus.30230.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kluge KE, Seljeflot I, Arnesen H, Jensen T, Halvorsen S, Helseth R. Coagulation factors XI and XII as possible targets for anticoagulant therapy. Thromb Res. 2022;214:53–62. https://doi.org/10.1016/j.thromres.2022.04.013.

    Article  CAS  PubMed  Google Scholar 

  18. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

    Article  CAS  PubMed  Google Scholar 

  19. Fayed A, Tarek A, Refaat MI, Abouzeid S, Salim SA, Zsom L, et al. Retrospective analysis of nontraumatic subdural hematoma incidence and outcomes in Egyptian patients with end-stage renal disease on hemodialysis. Ren Fail. 2021;43(1):1322–8. https://doi.org/10.1080/0886022x.2021.1979038.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wattanakit K, Cushman M, Stehman-Breen C, Heckbert SR, Folsom AR. Chronic kidney disease increases risk for venous thromboembolism. J Am Soc Nephrol. 2008;19(1):135–40. https://doi.org/10.1681/asn.2007030308.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Molnar AO, Bota SE, McArthur E, Lam NN, Garg AX, Wald R, et al. Risk and complications of venous thromboembolism in dialysis patients. Nephrol Dial Transplant. 2018;33(5):874–80. https://doi.org/10.1093/ndt/gfx212.

    Article  PubMed  Google Scholar 

  22. Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism. Front Pediatr. 2018;6:142. https://doi.org/10.3389/fped.2018.00142.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roetker NS, Guo H, Ramey DR, McMullan CJ, Atkins GB, Wetmore JB. Hemodialysis vascular access and risk of major bleeding, thrombosis, and cardiovascular events: a cohort study. Kidney Med. 2022;4(6):100456. https://doi.org/10.1016/j.xkme.2022.100456.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. JAMA. 2008;299(8):914–24. https://doi.org/10.1001/jama.299.8.914.

    Article  CAS  PubMed  Google Scholar 

  25. Suttorp MM, Hoekstra T, Ocak G, van Diepen AT, Ott I, Mittelman M, et al. Erythropoiesis-stimulating agents and thrombotic events in dialysis patients. Thromb Res. 2014;134(5):1081–6. https://doi.org/10.1016/j.thromres.2014.07.030.

    Article  CAS  PubMed  Google Scholar 

  26. Reed D, Palkimas S, Hockman R, Abraham S, Le T, Maitland H. Safety and effectiveness of apixaban compared to warfarin in dialysis patients. Res Pract Thromb Haemost. 2018;2(2):291–8. https://doi.org/10.1002/rth2.12083.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wetmore JB, Herzog CA, Yan H, Reyes JL, Weinhandl ED, Roetker NS. Apixaban versus warfarin for treatment of venous thromboembolism in patients receiving long-term dialysis. Clin J Am Soc Nephrol. 2022;17(5):693–702. https://doi.org/10.2215/cjn.14021021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knueppel P, Bang SH, Troyer C, Barriga A, Shin J, Cadiz CL, et al. Evaluation of standard versus reduced dose apixaban for the treatment of venous thromboembolism in patients with severe renal disease (ESRD-VTE). Thromb Res. 2022;220:91–6. https://doi.org/10.1016/j.thromres.2022.10.014.

    Article  CAS  PubMed  Google Scholar 

  29. Cheung CYS, Parikh J, Farrell A, Lefebvre M, Summa-Sorgini C, Battistella M. Direct oral anticoagulant use in chronic kidney disease and dialysis patients with venous thromboembolism: a systematic review of thrombosis and bleeding outcomes. Ann Pharmacother. 2021;55(6):711–22. https://doi.org/10.1177/1060028020967635.

    Article  CAS  PubMed  Google Scholar 

  30. Bennett WM. Should dialysis patients ever receive warfarin and for what reasons? Clin J Am Soc Nephrol. 2006;1(6):1357–9. https://doi.org/10.2215/cjn.01700506.

    Article  CAS  PubMed  Google Scholar 

  31. Quencer KB, Oklu R. Hemodialysis access thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S299–s308. https://doi.org/10.21037/cdt.2017.09.08.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumpfbeck A, Rockman CB, Jacobowitz GR, Lugo JZ, Barfield ME, Scher LA, et al. Anticoagulation therapy is associated with increased access-related wound infections after hemodialysis access creation. Ann Vasc Surg. 2022;80:136–42. https://doi.org/10.1016/j.avsg.2021.08.032.

    Article  PubMed  Google Scholar 

  33. Mizuno T, Nakamura M, Satoh N, Tsukada H, Matsumoto A, Hamasaki Y, et al. Patency with antiplatelet treatment after vascular access intervention therapy: a retrospective observational study. Ren Replace Ther. 2018;4(1):43. https://doi.org/10.1186/s41100-018-0184-5.

    Article  Google Scholar 

  34. Ames PRJ, Merashli M, Bucci T, Pastori D, Pignatelli P, Violi F, et al. Antiphospholipid antibodies in end-stage renal disease: a systematic review and meta-analysis. Hemodial Int. 2020;24(3):383–96. https://doi.org/10.1111/hdi.12847.

    Article  PubMed  Google Scholar 

  35. Mavrakanas TA, Charytan DM. Apixaban versus no anticoagulation by P2Y12 inhibitor prescription status in dialysis patients with atrial fibrillation. Kidney360. 2022;3(10):1769–71. https://doi.org/10.34067/kid.0003002022.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ktenopoulos N, Sagris M, Theofilis P, Lionaki S, Rallidis LS. Direct oral anticoagulants in patients on chronic dialysis and concomitant atrial fibrillation: a common clinical impasse. Front Biosci (Schol Ed). 2022;14(3):21. https://doi.org/10.31083/j.fbs1403021.

    Article  CAS  PubMed  Google Scholar 

  37. Chan KE, Edelman ER, Wenger JB, Thadhani RI, Maddux FW. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis. Circulation. 2015;131(11):972–9. https://doi.org/10.1161/CIRCULATIONAHA.114.014113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Vriese AS, Caluwé R, Van Der Meersch H, De Boeck K, De Bacquer D. Safety and efficacy of vitamin K antagonists versus rivaroxaban in hemodialysis patients with atrial fibrillation: a multicenter randomized controlled trial. J Am Soc Nephrol. 2021;32(6):1474–83. https://doi.org/10.1681/asn.2020111566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li W, Zhou Y, Chen S, Zeng D, Zhang H. Use of non-vitamin K antagonists oral anticoagulants in atrial fibrillation patients on dialysis. Front Cardiovasc Med. 2022;9:1005742. https://doi.org/10.3389/fcvm.2022.1005742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Siontis KC, Zhang X, Eckard A, Bhave N, Schaubel DE, He K, et al. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation. 2018;138(15):1519–29. https://doi.org/10.1161/CIRCULATIONAHA.118.035418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wetmore JB, Weinhandl ED, Yan H, Reyes JL, Herzog CA, Roetker NS. Apixaban dosing patterns versus warfarin in patients with nonvalvular atrial fibrillation receiving dialysis: a retrospective cohort study. Am J Kidney Dis. 2022;80(5):569–79.e1. https://doi.org/10.1053/j.ajkd.2022.03.007.

    Article  CAS  PubMed  Google Scholar 

  42. Pokorney SD, Chertow GM, Al-Khalidi HR, Gallup D, Dignacco P, Mussina K, et al. Apixaban for patients with atrial fibrillation on hemodialysis: a multicenter randomized controlled trial. Circulation. 2022;146(23):1735–45. https://doi.org/10.1161/circulationaha.121.054990.

    Article  PubMed  Google Scholar 

  43. Benz AP, Eikelboom JW. Apixaban compared with warfarin in patients with atrial fibrillation and end-stage renal disease: lessons learned. Circulation. 2022;146(23):1746–8. https://doi.org/10.1161/circulationaha.122.061647.

    Article  PubMed  Google Scholar 

  44. Faisaluddin M, Alwifati N, Naeem N, Balasubramanian S, Narasimhan B, Iqbal U, Dani SS. Safety and efficacy of direct oral anticoagulants versus warfarin for atrial fibrillation in end-stage renal disease on hemodialysis: A meta-analysis of randomized control trials. Am J Cardiol. 2023;206:309–311. https://doi.org/10.1016/j.amjcard.2023.08.116.

  45. Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost. 2004;30(5):579–89. https://doi.org/10.1055/s-2004-835678.

    Article  CAS  PubMed  Google Scholar 

  46. Toi H, Kinoshita K, Hirai S, Takai H, Hara K, Matsushita N, et al. Present epidemiology of chronic subdural hematoma in Japan: analysis of 63,358 cases recorded in a national administrative database. J Neurosurg. 2018;128(1):222–8. https://doi.org/10.3171/2016.9.Jns16623.

    Article  PubMed  Google Scholar 

  47. Talalla A, Halbrook H, Barbour BH, Kurze T. Subdural hematoma associated with long-term hemodialysis for chronic renal disease. JAMA. 1970;212(11):1847–9. https://doi.org/10.1001/jama.1970.03170240051007.

    Article  CAS  PubMed  Google Scholar 

  48. Sood P, Sinson GP, Cohen EP. Subdural hematomas in chronic dialysis patients: significant and increasing. Clin J Am Soc Nephrol. 2007;2(5):956–9. https://doi.org/10.2215/cjn.03781106.

    Article  PubMed  Google Scholar 

  49. Wang IK, Cheng YK, Lin CL, Peng CL, Chou CY, Chang CT, et al. Comparison of subdural hematoma risk between hemodialysis and peritoneal dialysis patients with ESRD. Clin J Am Soc Nephrol. 2015;10(6):994–1001. https://doi.org/10.2215/cjn.08140814.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rosenblatt SG, Drake S, Fadem S, Welch R, Lifschitz MD. Gastrointestinal blood loss in patients with chronic renal failure. Am J Kidney Dis. 1982;1(4):232–6. https://doi.org/10.1016/s0272-6386(82)80059-0.

    Article  CAS  PubMed  Google Scholar 

  51. Saeed F, Agrawal N, Greenberg E, Holley JL. Lower gastrointestinal bleeding in chronic hemodialysis patients. Int J Nephrol. 2011;2011:272535. https://doi.org/10.4061/2011/272535.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Z. Fadem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fadem, S.Z. (2023). Blood Clotting Complications in Dialysis. In: Fadem, S.Z., Moura-Neto, J.A., Golper, T.A. (eds) Complications in Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-031-44557-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44557-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44556-9

  • Online ISBN: 978-3-031-44557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation