CT-Guided, Unsupervised Super-Resolution Reconstruction of Single 3D Magnetic Resonance Image

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14220))

  • 7010 Accesses

Abstract

Deep learning-based algorithms for single MR image (MRI) super-resolution have shown great potential in enhancing the resolution of low-quality images. However, many of these methods rely on supervised training with paired low-resolution (LR) and high-resolution (HR) MR images, which can be difficult to obtain in clinical settings. This is because acquiring HR MR images in clinical settings requires a significant amount of time. In contrast, HR CT images are acquired in clinical routine. In this paper, we propose a CT-guided, unsupervised MRI super-resolution reconstruction method based on joint cross-modality image translation and super-resolution reconstruction, eliminating the requirement of high-resolution MRI for training. The proposed approach is validated on two datasets respectively acquired from two different clinical sites. Well-established metrics including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Metrics (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) are used to assess the performance of the proposed method. Our method achieved an average PSNR of 32.23, an average SSIM of 0.90 and an average LPIPS of 0.14 when evaluated on data of the first site. An average PSNR of 30.58, an average SSIM of 0.88, and an average LPIPS of 0.10 were achieved by our method when evaluated on data of the second site.

This study was partially supported by the National Natural Science Foundation of China via project U20A20199.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jia, Y., Gholipour, A., He, Z., Warfield, S.K.: A new sparse representation framework for reconstruction of an isotropic high spatial resolution MR volume from orthogonal anisotropic resolution scans. IEEE Trans. Med. Imaging 36(5), 1182–1193 (2017)

    Article  Google Scholar 

  2. Plenge, E., et al.: Super-resolution methods in MRI: can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magn. Reson. Med. 68(6), 1983–1993 (2012)

    Article  Google Scholar 

  3. Xuan, K., et al.: Reducing magnetic resonance image spacing by learning without ground-truth. Pattern Recogn. 120, 108103 (2021)

    Article  Google Scholar 

  4. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  5. Pham, C.H., Ducournau, A., Fablet, R., Rousseau, F.: Brain MRI super-resolution using deep 3D convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 197–200. IEEE (2017)

    Google Scholar 

  6. Shi, F., Cheng, J., Wang, L., Yap, P.T., Shen, D.: LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med. Imaging 34(12), 2459–2466 (2015)

    Article  Google Scholar 

  7. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  8. Chen, Y., **e, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain MRI super resolution using 3d deep densely connected neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 739–742. IEEE (2018)

    Google Scholar 

  9. Chen, Y., Shi, F., Christodoulou, A.G., **e, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  11. Feng, C.M., Yan, Y., Yu, K., Xu, Y., Shao, L., Fu, H.: Exploring separable attention for multi-contrast MR image super-resolution. ar**v preprint ar**v:2109.01664 (2021)

  12. Feng, C.-M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 140–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_14

    Chapter  Google Scholar 

  13. You, C., et al.: CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-circle). IEEE Trans. Med. Imaging 39(1), 188–203 (2019)

    Article  Google Scholar 

  14. Wang, J., Wang, R., Tao, R., Zheng, G.: UASSR: unsupervised arbitrary scale super-resolution reconstruction of single anisotropic 3D images via disentangled representation learning. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VI, pp. 453–462. Springer (2022). https://doi.org/10.1007/978-3-031-16446-0_43

  15. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  16. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  18. Lu, Z., Li, Z., Wang, J., Shi, J., Shen, D.: Two-stage self-supervised cycle-consistency network for reconstruction of thin-slice MR images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 3–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_1

    Chapter  Google Scholar 

  19. Shocher, A., Cohen, N., Irani, M.: zero-shot super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  20. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: Smore: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans. Med. Imaging 40(3), 805–817 (2020)

    Article  Google Scholar 

  21. Chatterjee, S., et al.: ReconResNet: regularised residual learning for MR image reconstruction of undersampled cartesian and radial data. Comput. Biol. Med. 143, 105321 (2022)

    Article  Google Scholar 

  22. Wu, Q., et al.: An arbitrary scale super-resolution approach for 3-dimensional magnetic resonance image using implicit neural representation. ar**v preprint ar**v:2110.14476 (2021)

  23. Du, J., et al.: Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network. Neurocomputing 392, 209–220 (2020)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Heimann, A.F., Tannast, M., Zheng, G. (2023). CT-Guided, Unsupervised Super-Resolution Reconstruction of Single 3D Magnetic Resonance Image. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14220. Springer, Cham. https://doi.org/10.1007/978-3-031-43907-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43907-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43906-3

  • Online ISBN: 978-3-031-43907-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation