Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14223))

  • 5132 Accesses

Abstract

Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as drop**, mixing image patches, and adding random noises suggest effective ways to address the labeling issues for natural images. However, they can only be restrictively applied to medical image segmentation as they carry risks of distorting or ignoring the underlying clinical information of local regions of interest in an image. In this paper, we propose a novel data augmentation method for medical image segmentation without losing the semantics of the key objects (e.g., polyps). This is achieved by perturbing the objects with quasi-imperceptible adversarial noises and training a network to expand discriminative regions with a guide of anti-adversarial noises. Such guidance can be realized by a consistency regularization between the two contrasting data, and the strength of regularization is automatically and adaptively controlled considering their prediction uncertainty. Our proposed method significantly outperforms various existing methods with high sensitivity and Dice scores and extensive experiment results with multiple backbones on two datasets validate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfarra, M., Pérez, J.C., et al.: Combating adversaries with anti-adversaries. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 5992–6000 (2022)

    Google Scholar 

  2. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing, pp. 1–4. IEEE (2017)

    Google Scholar 

  3. Chen, L.C., Zhu, Y., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 801–818 (2018)

    Google Scholar 

  4. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. ar**v preprint ar**v:1708.04552 (2017)

  5. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  6. Felder, S., Rabinovitz, H., et al.: Dermoscopic pattern of pigmented basal cell carcinoma, blue-white variant. Dermatol. Surg. 32(4), 569–570 (2006)

    Google Scholar 

  7. Ghiasi, G., Lin, T.Y., et al.: Dropblock: a regularization method for convolutional networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  8. Goodfellow, I.J., Shlens, J., et al.: Explaining and harnessing adversarial examples. ar**v preprint ar**v:1412.6572 (2014)

  9. Hu, Y., Zhong, Z., Wang, R., Liu, H., Tan, Z., Zheng, W.-S.: Data augmentation in logit space for medical image classification with limited training data. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 469–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_45

    Chapter  Google Scholar 

  10. Jha, D., Riegler, M.A., et al.: Doubleu-net: a deep convolutional neural network for medical image segmentation. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 558–564. IEEE (2020)

    Google Scholar 

  11. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  12. Juszczak, P., Duin, R.P.: Uncertainty sampling methods for one-class classifiers. In: Proceedings of ICML-03, Workshop on Learning with Imbalanced Data Sets II, pp. 81–88 (2003)

    Google Scholar 

  13. Kaissis, G.A., Makowski, M.R., et al.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  14. Lee, J.Y., Jeong, J., et al.: Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets. Sci. Rep. 10(1), 8379 (2020)

    Article  Google Scholar 

  15. Lee, J., Kim, E., et al.: Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4071–4080 (2021)

    Google Scholar 

  16. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Machine Learning Proceedings 1994, pp. 148–156. Elsevier (1994)

    Google Scholar 

  17. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  18. Madry, A., Makelov, A., et al.: Towards deep learning models resistant to adversarial attacks. ar**v preprint ar**v:1706.06083 (2017)

  19. Nguyen, V.L., Shaker, M.H., et al.: How to measure uncertainty in uncertainty sampling for active learning. Mach. Learn. 111(1), 89–122 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parmar, B., Talati, B.: Automated melanoma types and stages classification for dermoscopy images. In: 2019 Innovations in Power and Advanced Computing Technologies, vol. 1, pp. 1–7. IEEE (2019)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Rusak, E., et al.: A simple way to make neural networks robust against diverse image corruptions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 53–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_4

    Chapter  Google Scholar 

  23. Saleh, F.S., Aliakbarian, M.S., et al.: Effective use of synthetic data for urban scene semantic segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 84–100 (2018)

    Google Scholar 

  24. Sanderson, E., Matuszewski, B.J.: FCN-transformer feature fusion for polyp segmentation. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, C.B. (eds.) MIUA 2022. LNCS, vol. 13413, pp. 892–907. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12053-4_65

    Chapter  Google Scholar 

  25. Silva, J., Histace, A., et al.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Article  Google Scholar 

  26. Simard, P.Y., Steinkraus, D., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: International Conference on Document Analysis and Recognition, vol. 3 (2003)

    Google Scholar 

  27. Srivastava, A., Jha, D., et al.: MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation. IEEE J. Biomed. Health Inform. 26(5), 2252–2263 (2021)

    Article  Google Scholar 

  28. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  29. Wang, J., Huang, Q., et al.: Stepwise feature fusion: Local guides global. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 110–120. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_11

    Chapter  Google Scholar 

  30. Yang, J., Zhang, Y., Liang, Y., Zhang, Y., He, L., He, Z.: TumorCP: a simple but effective object-level data augmentation for tumor segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 579–588. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_55

    Chapter  Google Scholar 

  31. Yun, S., Han, D., et al.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  32. Zhao, X., Vemulapalli, R., et al.: Contrastive learning for label efficient semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10623–10633 (2021)

    Google Scholar 

  33. Zhong, Z., Zheng, L., et al.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  34. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  35. Ziller, A., Usynin, D., et al.: Medical imaging deep learning with differential privacy. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by IITP-2022-0-00290 (50%), IITP-2019-0-01906 (AI Graduate Program at POSTECH, 10%), IITP-2022-2020-0-01461 (ITRC, 10%) and NRF-2022R1A2C2092336 (30%) funded by the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hwa Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, H., Han, Y., Kim, W.H. (2023). Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust Medical Image Segmentation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation