FedIIC: Towards Robust Federated Learning for Class-Imbalanced Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14221))

  • 4422 Accesses

Abstract

Federated learning (FL), training deep models from decentralized data without privacy leakage, has shown great potential in medical image computing recently. However, considering the ubiquitous class imbalance in medical data, FL can exhibit performance degradation, especially for minority classes (e.g. rare diseases). Existing methods towards this problem mainly focus on training a balanced classifier to eliminate class prior bias among classes, but neglect to explore better representation to facilitate classification performance. In this paper, we present a privacy-preserving FL method named FedIIC to combat class imbalance from two perspectives: feature learning and classifier learning. In feature learning, two levels of contrastive learning are designed to extract better class-specific features with imbalanced data in FL. In classifier learning, per-class margins are dynamically set according to real-time difficulty and class priors, which helps the model learn classes equally. Experimental results on publicly-available datasets demonstrate the superior performance of FedIIC in dealing with both real-world and simulated multi-source medical imaging data under class imbalance. Code is available at https://github.com/wnn2000/FedIIC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Argenziano, G., et al.: Interactive atlas of dermoscopy (2000)

    Google Scholar 

  2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  4. Chen, Z., Yang, C., Zhu, M., Peng, Z., Yuan, Y.: Personalized retrogress-resilient federated learning toward imbalanced medical data. IEEE Trans. Med. Imaging 41(12), 3663–3674 (2022)

    Article  Google Scholar 

  5. Combalia, M., et al.: BCN20000: dermoscopic lesions in the wild. ar**v:1908.02288 (2019)

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: NeurIPS (2020)

    Google Scholar 

  7. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: CVPR, pp. 9268–9277 (2019)

    Google Scholar 

  8. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  9. Duan, M., et al.: Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Trans. Parallel Distrib. Syst. 32(1), 59–71 (2020)

    Article  Google Scholar 

  10. Flanders, A.E., et al.: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol. Artif. Intel. 2(3), e190211 (2020)

    Article  Google Scholar 

  11. Graf, F., Hofer, C., Niethammer, M., Kwitt, R.: Dissecting supervised constrastive learning. In: ICML, pp. 3821–3830 (2021)

    Google Scholar 

  12. Guo, Q., Qi, Y., Qi, S., Wu, D.: Dual class-aware contrastive federated semi-supervised learning. ar**v:2211.08914 (2022)

  13. Jiang, M., Wang, Z., Dou, Q.: HarmoFL: harmonizing local and global drifts in federated learning on heterogeneous medical images. In: AAAI, pp. 1087–1095 (2022)

    Google Scholar 

  14. Jiang, M., et al.: Dynamic bank learning for semi-supervised federated image diagnosis with class imbalance. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part III, pp. 196–206. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_19

    Chapter  Google Scholar 

  15. Ju, L., et al.: Flexible sampling for long-tailed skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part III, pp. 462–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_44

    Chapter  Google Scholar 

  16. Kang, B., Li, Y., **e, S., Yuan, Z., Feng, J.: Exploring balanced feature spaces for representation learning. In: ICLR (2021)

    Google Scholar 

  17. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  18. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  19. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: CVPR, pp. 10713–10722 (2021)

    Google Scholar 

  20. Li, T., et al.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  21. Li, T., et al.: Targeted supervised contrastive learning for long-tailed recognition. In: CVPR, pp. 6918–6928 (2022)

    Google Scholar 

  22. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: FedBN: federated learning on non-IID features via local batch normalization. In: ICLR (2021)

    Google Scholar 

  23. Li, X.C., Zhan, D.C.: FedRS: federated learning with restricted softmax for label distribution non-IID data. In: KDD, pp. 995–1005 (2021)

    Google Scholar 

  24. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: CVPR, pp. 2980–2988 (2017)

    Google Scholar 

  25. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR, pp. 1013–1023 (2021)

    Google Scholar 

  26. Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31

    Chapter  Google Scholar 

  27. Marrakchi, Y., Makansi, O., Brox, T.: Fighting class imbalance with contrastive learning. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III, pp. 466–476. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_44

    Chapter  Google Scholar 

  28. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS, pp. 1273–1282 (2017)

    Google Scholar 

  29. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH2-A dermoscopic image database for research and benchmarking. In: EMBC, pp. 5437–5440 (2013)

    Google Scholar 

  30. Menon, A.K., et al.: Long-tail learning via logit adjustment. In: ICLR (2021)

    Google Scholar 

  31. Mu, X., et al.: FedProc: prototypical contrastive federated learning on non-IID data. Future Gener. Comput. Syst. 143, 93–104 (2023). https://doi.org/10.1016/j.future.2023.01.019

    Article  Google Scholar 

  32. Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. U.S.A. 117(40), 24652–24663 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarkar, D., Narang, A., Rai, S.: Fed-Focal loss for imbalanced data classification in federated learning. In: IJCAI (2020)

    Google Scholar 

  34. Shang, X., Lu, Y., Huang, G., Wang, H.: Federated learning on heterogeneous and long-tailed data via classifier re-training with federated features. In: IJCAI (2022)

    Google Scholar 

  35. Shen, Z., Cervino, J., Hassani, H., Ribeiro, A.: An agnostic approach to federated learning with class imbalance. In: ICLR (2022)

    Google Scholar 

  36. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)

    Google Scholar 

  37. Tang, K., Tao, M., Qi, J., Liu, Z., Zhang, H.: Invariant feature learning for generalized long-tailed classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV, pp. 709–726. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20053-3_41

    Chapter  Google Scholar 

  38. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  39. Wang, L., Xu, S., Wang, X., Zhu, Q.: Addressing class imbalance in federated learning. Proc. AAAI Conf. Artif. Intell. 35(11), 10165–10173 (2021). https://doi.org/10.1609/aaai.v35i11.17219

    Article  Google Scholar 

  40. Yan, Z., Wicaksana, J., Wang, Z., Yang, X., Cheng, K.T.: Variation-aware federated learning with multi-source decentralized medical image data. IEEE J. Biomed. Health Inform. 25(7), 2615–2628 (2020)

    Article  Google Scholar 

  41. Yang, M., Wang, X., Zhu, H., Wang, H., Qian, H.: Federated learning with class imbalance reduction. In: EUSIPCO, pp. 2174–2178 (2021)

    Google Scholar 

  42. Yang, Z., et al.: ProCo: prototype-aware contrastive learning for long-tailed medical image classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VIII, pp. 173–182. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_17

    Chapter  Google Scholar 

  43. Zhang, J., et al.: Federated learning with label distribution skew via logits calibration. In: ICML, pp. 26311–26329 (2022)

    Google Scholar 

  44. Zhao, Y., Chen, W., Tan, X., Huang, K., Zhu, J.: Adaptive logit adjustment loss for long-tailed visual recognition. Proc. AAAI Conf. Artif. Intell. 36(3), 3472–3480 (2022). https://doi.org/10.1609/aaai.v36i3.20258

    Article  Google Scholar 

  45. Zhu, J., Wang, Z., Chen, J., Chen, Y.P.P., Jiang, Y.G.: Balanced contrastive learning for long-tailed visual recognition. In: CVPR, pp. 6908–6917 (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 62202179 and 62271220, in part by the Natural Science Foundation of Hubei Province of China under Grant 2022CFB585, and in part by the Research Grants Council GRF Grant 16203319. The computation is supported by the HPC Platform of HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengqiang Yan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 640 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, N., Yu, L., Yang, X., Cheng, KT., Yan, Z. (2023). FedIIC: Towards Robust Federated Learning for Class-Imbalanced Medical Image Classification. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation