Impact of Changing Abiotic Environment on Photosynthetic Adaptation in Plants

  • Chapter
  • First Online:
New Frontiers in Plant-Environment Interactions

Abstract

Plants rely on photosynthesis to convert light energy into chemical energy. However, their photosynthetic performance can be greatly affected by changes in the abiotic environment such as temperature, light intensity, and water availability. This draft summarizes the impact of changing abiotic conditions on photosynthetic adaptation in plants. Plants have developed various adaptive mechanisms to optimize their photosynthetic efficiency under different abiotic stresses. For example, under high light intensity, plants may regulate their photosynthetic apparatus by reducing the size of their light-harvesting antenna or increasing the activity of photorespiration. Similarly, under low water availability, plants can close their stomata to prevent water loss and reduce their photosynthetic activity, or activate molecular pathways to enhance drought tolerance. Understanding the molecular mechanisms underlying these adaptations is essential for develo** strategies to improve crop productivity and sustainability under changing environmental conditions. Advances in molecular biology and biotechnology have provided new tools for identifying genes and proteins involved in photosynthetic adaptation in plants. These findings can be applied to develop crop varieties that are better adapted to different environmental conditions, such as drought, high temperatures, or high salinity. Despite the progress made in understanding the impact of changing abiotic environments on photosynthetic adaptation in plants, there are still many challenges to be addressed. The complex interactions between plants and their environment, as well as the potential effects of multiple stresses, require further investigation. In addition, there is a need to develop sustainable agricultural practices that can mitigate the negative impacts of climate change on crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374

    Article  CAS  Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. In: Survival strategies in extreme cold and desiccation: adaptation mechanisms and their applications, pp 215–232

    Google Scholar 

  • Ahmad N, Tariq H (2021) Azolla as waste decomposer and bio-fertilizer: a review. J Appl Res Plant Sci 2(1):108–116. https://doi.org/10.38211/joarps.2021.2.1.14

  • Ahmad F, Ahmad I, Khan MS, Saifullah A, Singh R (2019) Plant growth-promoting bacteria improve the tolerance of wheat plants to salt stress. Archiv Agron Soil Sci 65(7):938–950. https://doi.org/10.1080/03650340.2018.1559124

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  Google Scholar 

  • Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot 70:40–57

    Google Scholar 

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth photosynthesis water relations and oxidative defence mechanism. J Agron Crop Sci 197(4):258–271. https://doi.org/10.1111/j.1439-037X.2010.00463.x

  • Ali S, **e L (2019) Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Pat Food Nutr Agric 11(2):96–104

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Association, Brussels, 2nd edn. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121

    Article  CAS  Google Scholar 

  • Antoniou C, Chatzimichail G, Xenofontos R, Pavlou JJ, Panagiotou E, Christou A et al (2017) Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res 62:1–14

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  Google Scholar 

  • Ashraf MFMR, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Azevedo H, Pinto G, Fernandes J, Loureiro S, Santos C (2005) Cadmium effects on sunflower: growth and photosynthesis. J Plant Nutr 28:2211–2220

    Article  CAS  Google Scholar 

  • Balakrishnan K, Rajendran C, Kulandaivelu G (2001) Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 38:477–479

    Article  Google Scholar 

  • Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Garcia-Sanchez F (2017) Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140:8–18

    Article  CAS  Google Scholar 

  • Batra NG, Sharma V, Kumari N (2014) Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J Plant Interact 9(1):712–721

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65(5):1229–1240

    Article  CAS  Google Scholar 

  • Blankenship RE (2008) Photosynthetic pigments: Structure and spectroscopy. Mol Mech Photosynth 2:41–58

    Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115

    Article  CAS  Google Scholar 

  • Boyer JS (2009) Evans review: cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36(5):383–394

    Article  CAS  Google Scholar 

  • Bremond L, Boom A, Favier C (2012) Neotropical C3/C4 grass distributions—present, past and future. Glob Change Biol 18:2324–2334

    Article  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  Google Scholar 

  • Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynth 42:505–510

    Article  CAS  Google Scholar 

  • Calanca PP (2017) Effects of abiotic stress in crop production. In: Quantification of climate variability, adaptation and mitigation for agricultural sustainability, pp 165–180

    Google Scholar 

  • Centritto M, Haworth M, Marino G, Pallozzi E, Tsonev T, Velikova V, Nogues I, Loreto F (2014) Isoprene emission aids recovery of photosynthetic performance in transgenic Nicotiana tabacum following high intensity acute UV-B exposure. Plant Sci 226:82–91. https://doi.org/10.1016/j.plantsci.2014.06.004

    Article  CAS  Google Scholar 

  • Chazdon RL, Brancalion PH, Laestadius L, Bennett-Curry A, Buckingham K, Kumar C, Wilson SJ et al (2016) When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45(5):538–550

    Article  Google Scholar 

  • Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z (2018) Formation and change of chloroplast-located plant metabolites in response to light conditions. Int J Mol Sci 19:654

    Article  Google Scholar 

  • Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Aust J Grape Wine Res 16:86–93

    Article  CAS  Google Scholar 

  • Croce R, Van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492

    Article  CAS  Google Scholar 

  • Dar NA, Amin I, Wani W, Wani SA, Shikari AB, Wani SH, Masoodi KZ (2017) Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106–111

    Article  CAS  Google Scholar 

  • De Oliveira VC, Joly CA (2010) Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): morphological, physiological and growth responses. Trees 24:185–193

    Article  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Baker CR, Adams WW (2018) Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int J Mol Sci 19:872

    Article  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945

    Article  CAS  Google Scholar 

  • Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Van den Ende W et al (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13(5):767–776

    Article  CAS  Google Scholar 

  • Dong X, Han J, Zeng H, Zhong Y, Wei X, Zhang J, Yan H et al (2020) Overexpression of GmWRKY54 improves salt tolerance in soybean. Front Plant Sci 11:1577. https://doi.org/10.3389/fpls.2020.01577

    Article  Google Scholar 

  • dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2(1):113–135

    Article  Google Scholar 

  • DrennanPN NPS (2000) Response of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ 23:767–781

    Article  Google Scholar 

  • Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777. https://doi.org/10.1007/s11738-008-0179-x

  • Ergün N, Öncel I (2012) Effects of some heavy metals and heavy metal hormone interactions on wheat (Triticum aestivum L. cv. Gun 91) seedlings. Afr J Agric Res 7(10):1518–1523

    Google Scholar 

  • Erickson E, Wakao S, Niyogi KK (2015) Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J 82(3):449–465

    Article  CAS  Google Scholar 

  • Espanany A, Fallah S, Tadayyon A (2015) The effect of halopriming and salicylic acid on the germination of fenugreek (Trigonella foenum-graecum) under different cadmium concentrations. Notulae Scientia Biologicae 7(3):322–329

    Article  CAS  Google Scholar 

  • Etesami H, Beattie GA (2018) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Cham, pp 163–196

    Google Scholar 

  • FAO (2018) Sustainable land management practices: an overview. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ali A, Ahmad A (2013) Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress 7(1):8–18

    Google Scholar 

  • Farooq H, Asghar HN, Khan MY, Saleem M, Zahir ZA (2015) Auxin-mediated growth of rice in cadmium-contaminated soil. Turk J Agric for 39(2):272–276

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–221

    Article  Google Scholar 

  • Faseela P, Puthur JT (2018) The imprints of the high light and UV-B stresses in Oryza sativa L. ‘Kanchana’seedlings are differentially modulated. J Photochem Photobiol B 178:551–559

    Article  CAS  Google Scholar 

  • Feng J, Huang P, Wan X (2019) Interactive effects of wind and light on growth and architecture of poplar saplings. Ecol Res 34(1):94–105

    Article  CAS  Google Scholar 

  • Fidalgo F, Freitas R, Ferreira R, Pessoa AM, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72(2):312–319. https://doi.org/10.1016/j.envexpbot.2011.04.007

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Zaks DP et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    Article  CAS  Google Scholar 

  • Gan Y, Siddique KH, Turner NC, Li XG, Niu JY, Yang C, Liu L (2015) Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron 129:241–302

    Google Scholar 

  • Gazal A, Dar ZA, Lone AA (2018) Molecular breeding for abiotic stresses in maize (Zea mays L.). Maize germplasm: characterization and genetic approaches for crop improvement:25–38

    Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16(3):1807–1828

    Article  CAS  Google Scholar 

  • Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions, AoB Plants 6:plu049. https://doi.org/10.1093/aobpla/plu049

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C et al (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11(8):e0160157

    Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. In: Abiotic and biotic stress in plants, pp 1–19

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014

    Google Scholar 

  • Gururani MA, Venkatesh J, Tran LS (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8(9):1304–1320

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. S Afr J Bot 119:1–10

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2022) Plant responses and tolerance to salt stress: physiological and molecular interventions. Int J Mol Sci 23(9):4810

    Article  CAS  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Jensen ES et al (2018) Pea–barley intercrop** for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic crop** systems. Field Crop Res 221:104–116

    Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, Ieperen WV, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:107–3117

    Article  Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, Islam T et al (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11(2):241

    Google Scholar 

  • Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548

    Article  Google Scholar 

  • Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51(10):5675–5684. https://doi.org/10.1021/acs.est.6b06531

  • Hui D, Yu CL, Deng Q, Dzantor EK, Zhou S, Dennis S, Sauve R, Johnson TL, Fay PA, Shen W, Luo Y (2018) Effects of precipitation changes on switchgrass photosynthesis, growth, and biomass: a mesocosm experiment. PLoS ONE 13(2):e0192555

    Article  Google Scholar 

  • Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Muller B et al (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154(1):357–372

    Article  CAS  Google Scholar 

  • Hussain M, Khan TA, Yusuf M, Fariduddin Q (2019) Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environ Sci Pollut Res 26(17):17163–17172

    Article  CAS  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475

    Article  Google Scholar 

  • Jaiswal DK, Dubey RS (2015) Heavy metal toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Google Scholar 

  • Jajoo A, Allakhverdiev SI (2017) High-temperature stress in plants: consequences and strategies for protecting photosynthetic machinery. Plant Stress Physiol 2017:138–154

    Article  Google Scholar 

  • Kalai T, Bouthour D, Manai J, Bettaieb Ben Kaab L., Gouia H (2016) Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Archiv Agron Soil Sci 62(6):892–904

    Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Article  Google Scholar 

  • Kannan ND, Kulandaivelu G (2011) Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J Med Plants Res 5(16):3929–3935

    CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25(15):15159–15173

    Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B: Biol 112:1–6. https://doi.org/10.1016/j.jphotobiol.2012.03.009

  • Kapoor D, Singh M, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8(8):260

    Article  CAS  Google Scholar 

  • Karcz W, Kurtyka R (2007) Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biol Plant 51:713–719

    Article  CAS  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982

    Article  CAS  Google Scholar 

  • Kaur P, Bali S, Sharma A, Kohli SK, Vig AP, Bhardwaj R, Thukral AK, Abd Allah EF, Wijaya L, Alyemeni MN, Ahmad P (2019) Cd induced generation of free radical species in Brassica juncea is regulated by supplementation of earthworms in the drilosphere. Sci Total Environ 655:663–675

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  Google Scholar 

  • Keunen ELS, Peshev D, Vangronsveld J, Van Ende WIM, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    Google Scholar 

  • Kaur L, Ojha A, Kanwar N (2021) Dust accumulation and its effect on plant species grown along national highways 11 and 89 in Bikaner (Rajasthan). J Himalayan Ecol Sustain Dev 16:38–53

    Google Scholar 

  • Khalid MF, Hussain S, Ahmad S, Ejaz S, Zakir I, Ali MA, Anjum MA et al (2019) Impacts of abiotic stresses on growth and development of plants. In: Plant tolerance to environmental stress. CRC Press, pp 1–8

    Google Scholar 

  • Khalvandi M, Siosemardeh A, Roohi F, Keramati S (2021) Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon 7(1)

    Google Scholar 

  • Khan N, Bano A (2018) Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. Int J Phytoremed 16:405–414

    Article  Google Scholar 

  • Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639

    Article  CAS  Google Scholar 

  • Kim T, Wetzstein HY (2003) Cytological and ultrastructural evaluations of zinc deficiency in leaves. J Am Soc Hort Sci 128:171–175

    Article  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19(6):479–509

    Article  CAS  Google Scholar 

  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R (2020) Current scenario of pb toxicity in plants: unraveling plethora of physiological responses. Rev Environ Contamin Toxicol 249:153–197

    CAS  Google Scholar 

  • Krantev A, Yordanova R, Popova L (2006) Salicylic acid decreases Cd toxicity in maize plants. Gen Appl Plant Physiol 3:45–52

    Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  Google Scholar 

  • Kumari A, Das R, Subudhi E, Tripathy BC, Ahn CH (2019) Insights into the role of microbes in the growth and stress tolerance of plants. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 1–14

    Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    Article  Google Scholar 

  • Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, Awasthi NK et al (2022) Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops. Int J Mol Sci 23(15):8519

    Article  CAS  Google Scholar 

  • Lal R (2014) Soil conservation and restoration for carbon sequestration to mitigate climate change. Soil Tillage Res 137:1–8

    Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  Google Scholar 

  • Lawson T, Simkin AJ, Kelly G, Granot D, Sulpice R (2020) Integrating models and experiments to predict the effects of abiotic stress on crop growth and yield. Curr Opin Plant Biol 54:9–15

    Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Google Scholar 

  • Leng P, Yuan B, Guo Y (2013) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65(16):4577–4588

    Article  Google Scholar 

  • Li SL, Tan TT, Fan YF, Raza MA, Wang ZL, Wang BB, Feng YANG (2022) Response of leaf stomatal and mesophyll conductance to abiotic stress factors. J Integr Agric

    Google Scholar 

  • Li Z, Yu J, Peng Y, Huang B (2016) Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in cree** bentgrass (Agrostis stolonifera). Sci Rep 6(1):1–16

    Google Scholar 

  • Lim CW, Baek W, Jung J, Kim JH, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16(7):15251–15270

    Article  CAS  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L (2018) AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 8(1):2250

    Article  Google Scholar 

  • Liu ZB, Cheng RM, **ao WF, Wang RL, Feng XH et al (2013) Effect of waterlogging on photosynthetic and physioecological characteristics of plants. World for Res 26:33–38

    Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    Article  Google Scholar 

  • Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22(9):2930–2942

    Article  CAS  Google Scholar 

  • Liu J, Schulz H, Brandl S, Miehe S, Scholten T, Zhao Y (2019) Effects of biochar application on soil microbial biomass, activity, and community structure during sugarcane cultivation. J Soils Sediments 19(4):1959–1970

    Google Scholar 

  • Liu Y, Khan AR, Gan Y (2022) C2H2 zinc finger proteins response to abiotic stress in plants. Int J Mol Sci 23(5):2730

    Article  CAS  Google Scholar 

  • Lopez-Marquez D, Reynolds M, Braun HJ, Mondal S (2019) Combating abiotic stresses in wheat for improved food security. Glob Food Sec 21:34–41

    Google Scholar 

  • Macedo AF, Marcos VL, Tavares ES, Lage CLS, Esquibel MA (2011) The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze. J Environ Exp Bot 70:43–50

    Article  Google Scholar 

  • Macková J, Vasková M, Macek P, Hronková M, Schreiber L, Santrucek J (2013) Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot 86:70–75

    Article  Google Scholar 

  • Maphosa L, Richards MF, Norton SL, Nguyen GN (2020) Breeding for abiotic stress adaptation in chickpea (Cicer arietinum L.): a comprehensive review. Crop Breed Genet Genomics 4(3)

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modification to cellular components in plants. Annu Rev Plant Biol 58(1):459–481

    Article  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B 137:116–126

    Article  CAS  Google Scholar 

  • Mehmood A, Khan N, Irshad M, Hamayun M (2018) IAA producing endopytic fungus Fusariun oxysporum wlw colonize maize roots and promoted maize growth under hydroponic condition. Eur Exp Biol

    Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence studies revealing effects of high salt stress on Photosystem II. Plant Physiol Biochem 48:16–20

    Article  CAS  Google Scholar 

  • Meng LL, Song JF, Wen J, Zhang J, Wei JH (2016) Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 54(3):414–421

    Article  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  Google Scholar 

  • Mir MA, John R, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Mittal S, Cai Y, Nalam MN, Bolon DN, Schiffer CA (2012) Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 134(9):4163–4168

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Google Scholar 

  • Molino A, Mehariya S, Iovine A, Casella P, Marino T, Karatza D, Musmarra D et al (2020) Enhancing biomass and lutein production from Scenedesmus almeriensis: effect of carbon dioxide concentration and culture medium reuse. Front Plant Sci 11:415

    Article  Google Scholar 

  • Mondal S, Sallam A, Sehgal D, Sukumaran S, Farhad M, Navaneetha Krishnan J, Biswal A et al (2021) Advances in breeding for abiotic stress tolerance in wheat. In: Genomic designing for abiotic stress resistant cereal crops, pp 71–103

    Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Int J Bot 6(2):136–143

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Masto RE, Tripathi RC, Srivastava NK (2019) Application of soil quality indicators for the phytorestoration of mine spoil dumps. In: Phytomanagement of polluted sites. Elsevier, pp 361–388

    Google Scholar 

  • Munzuroglu O, Zengin FK (2006) Effect of cadmium on germination, coleoptile and root growth of barley seeds in the presence of gibberellic acid and kinetin. J Environ Biol 27(4):671–677

    CAS  Google Scholar 

  • Murchie EH (2017) Safety conscious or living dangerously: what is the “right” level of plant photoprotection for fitness and productivity? Plant Cell Environ 40(8):1239–1242

    Article  CAS  Google Scholar 

  • Naoya F, Mitsuko F, Yoshitaka O, Sadanori S, Shigeo N, Hiroshi E (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinastyin geranium under red light condition. J Sci Hortic 115:176–182

    Article  Google Scholar 

  • Naing AH, Kim CK (2021) Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiol Plant 172(3):1711–1723

    Article  CAS  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777–8796

    Article  CAS  Google Scholar 

  • Noctor G, Arisi AC, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant physiol 118(2):471–482. https://doi.org/10.1104/pp.118.2.471

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant physiol 164(4):1636–1648. https://doi.org/10.1104/pp.113.233478

  • Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. Afr J Bot 1:261–266

    Article  Google Scholar 

  • Oshunsanya SO, Nwosu NJ, Li Y (2019). Abiotic stress in agricultural crops under climatic conditions. In: Sustainable agriculture, forest and environmental management, pp 71–100

    Google Scholar 

  • Pan J, Guo B (2016) Effects of light intensity on the growth, photosynthetic characteristics, and flavonoid content of Epimedium pseudowushanense BLGuo. Molecules 21(11):1485

    Article  Google Scholar 

  • Pandey P, Singh J, Achary VMM, Reddy MK (2015) Redox homeostasis via gene families of the ascorbate-glutathione pathway. Front Environ Sci 3:25

    Article  Google Scholar 

  • Parr CL, Gray EF, Bond WJ, Robertson HG (2014) Reforestation of South African savanna degraded by mining: carbon sequestration potential. Ecol Appl 24(3):446–453

    Google Scholar 

  • Pau S, Edwards EJ, Still CJ (2013) Improving our understanding of environmental controls on the distribution of C3 and C4 grasses. Glob Change Biol 19:184–196

    Article  Google Scholar 

  • Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19(3):787

    Article  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  Google Scholar 

  • Pérez Chaca MV, Vigliocco A, Reinoso H, Molina A, Abdala G, Zirulnik F, Pedranzani H (2014) Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.) Merr. Acta Physiol Plant 36:2815–2826

    Article  Google Scholar 

  • Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia Series Botânica 53(1)

    Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced cadmium stress tolerance in rice seedlings: Coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. CR Biol 339(11–12):462–474

    Article  Google Scholar 

  • Rehman A, Farooq M, Nawaz A, Amanullah A, Basra SMA, Nawaz A (2021) Plant growth-promoting bacteria improved drought tolerance in maize through osmoprotectants accumulation. Arch Agron Soil Sci 67(6):748–764. https://doi.org/10.1080/03650340.2020.1867421

    Article  Google Scholar 

  • Rejeb KB, Benzarti M, Debez A, Bailly C, Savouré A, Abdelly C (2015) NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. J Plant Physiol 174:5–15

    Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Phys Biochem 49(6):636–645

    Google Scholar 

  • Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW (2018) Some like it hot: the physiological ecology of C4 plant evolution. Oecologia 187:941–966

    Article  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21

    Article  Google Scholar 

  • Salazar C, Hernández C, Pino MT (2015) Plant water stress: associations between ethylene and abscisic acid response. Chil J Agric Res 75:71–79

    Article  Google Scholar 

  • Salma T, Mohamed A, Abderrahim B, Raja BL, Wissal B, Hela BA, Meddich A (2023) Combined use of mycorrhizae and green compost for reducing the deleterious effects of salt stress in two genotypes of quinoa (Chenopodium quinoa). J Soil Sci Plant Nutr:1–18

    Google Scholar 

  • Sánchez-López R, García-Sánchez F, Zamarreño ÁM, García-Mina JM, Baigorri R (2019) Effect of fungal inoculation on plant growth and nutrient uptake in sunflower (Helianthus annuus L.) under phosphorus deficit. J Plant Nutr Soil Sci 182(1):29–36

    Google Scholar 

  • Santos C, Monteiro M, Dias MC (2010) Cadmium toxicity in crops: a review. In: Environmental science, engineering and technology. Nova Publishers, Novinka

    Google Scholar 

  • Schottler MA, Toth SZ, Boulouis A, Kahlau S (2015) Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J Exp Bot 66(9):2373–2400

    Article  Google Scholar 

  • Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr (III) in celery seedlings. Chemosphere 64:1695–1703

    Article  CAS  Google Scholar 

  • Shahzad B, Mughal MN, Tanveer M, Gupta D, Abbas G (2017) Is lithium biologically an important or toxic element to living organisms? an overview. Environ Sci Pollut Res 24:103–115. https://doi.org/10.1007/s11356-016-7898-0

  • Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: reasons, mechanisms and remediation possibilities—a review. Plant Physiol Biochem 107:104–115. https://doi.org/10.1016/j.plaphy.2016.05.034

  • Shah AN, Tanveer M, Shahzad B, Yang G, Fahad S, Ali S, Bukhari MA, Tung SA, Hafeez A, Souliyanonh B (2017) Soil compaction effects on soil health and cropproductivity: an overview. Environ Sci Pollut Res 24:10056–10067

    Article  Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, Rehman SU, Zhaorong D (2018a) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018b) Nickel; whether toxic or essential for plants and environment—a review. Plant Physiol Biochem 132:641–651

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018c) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    Article  CAS  Google Scholar 

  • Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK (2022) Elevated CO2 and water stress in combination in plants: brothers in arms or partners in crime? Biology 11:1330

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Google Scholar 

  • Sharma NYS (2016) Reactive oxygen species, oxidative stress and ROS scavenging system in plants. J Chem Pharm Res 8(5):595–604

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012

    Google Scholar 

  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2016a) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf 133:195–201

    Article  CAS  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK et al (2016b) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    Google Scholar 

  • Sharma A, Zheng B (2019) Melatonin mediated regulation of drought stress: physiological and molecular aspects. Plants 8(7):190

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019a) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B (2019b) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Planta

    Google Scholar 

  • Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B (2019c) Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects

    Google Scholar 

  • Sharma S, Chen C, Khatri K, Rathore MS, Pandey SP (2019d) Gracilaria dura extract confers drought tolerance in wheat by modulating abscisic acid homeostasis. Plant Physiol Biochem 136:143–154

    Article  CAS  Google Scholar 

  • Sharma A, Hamel S, Bethkenhagen M, Pask JE, Suryanarayana P (2020a) Real-space formulation of the stress tensor for O (N) density functional theory: application to high temperature calculations. J Chem Phys 153(3):034112

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Zheng B et al (2020b) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2020c) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2020:1–18

    Google Scholar 

  • Shin H, Oh S, Arora R, Kim D (2016) Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: a response associated with growth resumption or heat stress? Can J Plant Sci 96(4):630–638

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere 182:129–136

    Article  CAS  Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67:2229–2240

    Article  CAS  Google Scholar 

  • Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. In: Biotic and abiotic stress tolerance in plants, pp 27–46

    Google Scholar 

  • Singh J, Reddy PS, Reddy CS, Reddy MK (2015) Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4:55–63

    Article  CAS  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    Article  CAS  Google Scholar 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31–45

    Article  CAS  Google Scholar 

  • Smolikova G, Kreslavski V, Shiroglazova O, Bilova T, Sharova E, Frolov A, Medvedev S (2017) Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons. Funct Plant Biol 45(2):228–235

    Article  Google Scholar 

  • Smolikova G, Shiroglazova O, Vinogradova G, Leppyanen I, Dinastiya E, Yakovleva O, Dolgikh E, Titova G, Frolov A, Medvedev S (2020) Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in develo** embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars. Funct Plant Biol 47:409–424. https://doi.org/10.1071/FP19270

  • Soares C, Branco-Neves S, de Sousa A, Azenha M, Cunha A, Pereira R, Fidalgo F (2018) SiO2 nanomaterial as a tool to improve hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622:517–525

    Article  Google Scholar 

  • Soares C, Carvalho MEA, Azevedo RA, Fidalgo F (2019) Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot 161:4–25

    Article  CAS  Google Scholar 

  • Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:1–20

    Article  Google Scholar 

  • Stewart JJ, Adams WW III, Escobar CM, López-Pozo M, Demmig-Adams B (2020) Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Front Plant Sci 11:480

    Article  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2019) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    Article  CAS  Google Scholar 

  • Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1059

    Article  Google Scholar 

  • Tattersall EA, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    Article  CAS  Google Scholar 

  • Taub D (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Edu Knowl 3(10):21

    Google Scholar 

  • Taylor SH, Ripley BS, Woodward FI, Osborne CP (2011) Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant Cell Environ 34:65–75

    Article  CAS  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. J Plant Cell Physiol 50:684–697

    Article  CAS  Google Scholar 

  • Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19(1):10–17

    Article  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  Google Scholar 

  • Tikkanen M, Gollan PJ, Mekala NR, Isojärvi J, Aro EM (2014) Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos Trans R Soc B Biol Sci 369:20130229

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  CAS  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Cona A et al (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157(1):200–215

    Article  CAS  Google Scholar 

  • Tomar RS, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 44:411–419

    Article  Google Scholar 

  • Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H et al (2011) Transgenic potato overproducing l-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307

    Article  CAS  Google Scholar 

  • Usman M, Ahmad N, Raza W, Zhao Z, Abubakar M, Rehman SU, Ikram S, Tariq H (2023) Impact of biochar on the yield and nutritional quality of tomatoes (Solanum lycopersicum) under drought stress. J Sci Food and Agric 103(7):3479–3488. https://doi.org/10.1002/jsfa.12517

  • Viana TVA, da Silva EG, de Almeida FEP, do Nascimento LC, de Souza Júnior MT, de Souza EL et al (2019) Chitosan application in maize leaves enhances tolerance to drought stress. J Plant Growth Regul 38(4):1354–1364. https://doi.org/10.1007/s00344-019-09953-2

  • Villiers F, Jourdain A, Bastien O, Leonhardt N, Fujioka S, Tichtincky G, Hugouvieux V et al (2012) Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. J Exp Bot 63(3):1185–1200

    Article  CAS  Google Scholar 

  • Vincent D, Ergül A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Cramer GR et al (2007). Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Botany 58(7):1873–1892

    Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Sharma S et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Marc RA et al (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11(13):1620

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang Y, Tong Y, Chu H, Chen X, Guo H, Yuan H, Yan D, Zheng B (2017) Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. Biologia 72(7):735–744

    Article  CAS  Google Scholar 

  • Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open 7:035279

    CAS  Google Scholar 

  • Wang H, Wang L, He X, Wang W, Zhang X, Song Q (2020) Effects of precision irrigation on wheat yield, water use efficiency, and soil salinity under simulated drought stress. Agric Water Manag 231:105992

    Google Scholar 

  • Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  Google Scholar 

  • Way DA, Katul GG, Manzoni S, Vico G (2014) Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. J Exp Bot 65:3683–3693

    Article  Google Scholar 

  • Wimalasekera R (2019) Effect of light intensity on photosynthesis. In: Photosynthesis, productivity and environmental stress, vol 4. John Wiley & Sons Ltd., pp 65–73

    Google Scholar 

  • Yadav P, Kaur R, Kanwar MK, Sharma A, Verma V, Sirhindi G, Bhardwaj R (2018) Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol Environ Saf 147:725–734

    Article  CAS  Google Scholar 

  • Yadav S, Modi P, Dave A, Vijapura A, Patel D, Patel M (2020) Effect of abiotic stress on crops. Sustain Crop Prod 3.

    Google Scholar 

  • Yan W, Zhong Y, Shangguan Z (2016) A meta-analysis of leaf gas exchange and water status responses to drought. Sci Rep

    Google Scholar 

  • Yang D, Peng S, Wang F (2020) Response of photosynthesis to high growth temperature was not related to leaf anatomy plasticity in rice (Oryza sativa L.). Front Plant Sci 11:26

    Google Scholar 

  • Yang X, Xu H, Shao L, Li T, Wang Y, Wang R (2018a) Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ Exp Bot 150:161–171

    Article  CAS  Google Scholar 

  • Yang LP, Zhu J, Wang P, Zeng J, Tan R, Yang YZ, Liu ZM (2018b) Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol Environ Saf 160:10–18

    Article  CAS  Google Scholar 

  • Yi YH, Fan DY, **e ZQ, Chen FQ (2006) Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of quercus variabilis and pterocarya stenoptera. J Plant Ecol (chin Vers) 30:960–968

    Article  CAS  Google Scholar 

  • Yuan P, Yang T, Poovaiah BW (2018) Calcium signaling-mediated plant response to cold stress. Int J Mol Sci 19(12):3896. https://doi.org/10.3390/ijms19123896

  • Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Sun MX et al (2014) Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot 65(12):3235–3248

    Article  CAS  Google Scholar 

  • Zavafer A, Cheah MH, Hillier W, Chow WS, Takahashi S (2015) Photodamage to the oxygen evolving complex of photosystem II by visible light. Sci Rep 5:16363

    Article  CAS  Google Scholar 

  • Zhang H, Zhong H, Wang J, Sui X, Xu N (2016) Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo.” Peer J 4:e2125

    Article  Google Scholar 

  • Zhang Z, Hu Z, Zhang Y, Liu Y, Chen X, Zhang Y, Chen X (2021) Salicylic acid confers heat tolerance in tomato plants by inducing antioxidant defense and heat shock protein expression. Hortic Res 8(1):60. https://doi.org/10.1038/s41438-021-00511-x

    Article  CAS  Google Scholar 

  • Zhao X, Yu X, Chen X (2019) Overexpression of OsJAZ9 improves drought tolerance in rice through regulating the expression of several stress-related genes. Front Plant Sci 10:1700. https://doi.org/10.3389/fpls.2019.01700

    Article  Google Scholar 

  • Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of plant responses to salt stress. Int J Mol Sci 22(9):28

    Article  Google Scholar 

  • Zhenzhu Yongmei C, Zhen Z, Dan Z, Jie H, Lixia H, **n L (2019) VvWRKY13 from Vitis vinifera negatively modulates salinity tolerance. Plant Cell Tissue Organ Culture (PCTOC) 139(3):455–465

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ashar Ayub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, N. et al. (2023). Impact of Changing Abiotic Environment on Photosynthetic Adaptation in Plants. In: Aftab, T. (eds) New Frontiers in Plant-Environment Interactions. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-43729-8_14

Download citation

Publish with us

Policies and ethics

Navigation