LBKENet:Lightweight Blur Kernel Estimation Network for Blind Image Super-Resolution

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Blind image super-resolution (Blind-SR) is the process of leveraging a low-resolution (LR) image, with unknown degradation, to generate its high-resolution (HR) version. Most of the existing blind SR techniques use a degradation estimator network to explicitly estimate the blur kernel to guide the SR network with the supervision of ground truth (GT) kernels. To solve this issue, it is necessary to design an implicit estimator network that can extract discriminative blur kernel representation without relying on the supervision of ground-truth blur kernels. We design a lightweight (LBKENet) approach for blind super-resolution (Blind-SR) that estimates the blur kernel and restores the HR image based on a deep convolutional neural network (CNN) and a deep super-resolution residual convolutional generative adversarial network. Since the blur kernel for blind image SR is unknown, following the image formation model of the blind super-resolution problem, we first introduce a neural network-based model to estimate the blur kernel. This is achieved by (i) a Super Resolver that, from a low-resolution input, generates the corresponding SR image; and (ii) an Estimator Network generating the blur kernel from the input datum. The output of both models is used in a novel loss formulation. The proposed network is end-to-end trainable. The methodology proposed is substantiated by both quantitative and qualitative experiments. Results on benchmarks demonstrate that our computationally efficient approach (12\(\times \) fewer parameters than the state-of-the-art models) performs favorably with respect to approaches that have less number of parameters and can be used on devices with limited computational capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: IEEE CVPRW, pp. 126–135 (2017)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: ECCV, pp. 252–268 (2018)

    Google Scholar 

  3. Bansal, V., Foresti, G.L., Martinel, N.: Cloth-changing person re-identification with self-attention. In: WACVW, pp. 602–610 (2022)

    Google Scholar 

  4. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-gan. In: NeurIPS, vol. 32 (2019)

    Google Scholar 

  5. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  6. Bhat, G., et al.: Ntire 2021. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 613–626 (2021)

    Google Scholar 

  7. Bhat, G., Danelljan, M., Timofte, R., et al.: NTIRE 2021 challenge on burst super-resolution: methods and results. In: CVPRW (2021)

    Google Scholar 

  8. Dunnhofer, M., Martinel, N., Micheloni, C.: Improving MRI-based knee disorder diagnosis with pyramidal feature details. In: International Conference on Medical Imaging with Deep Learning, vol. 143, pp. 131–147. PMLR (2021)

    Google Scholar 

  9. Dunnhofer, M., Martinel, N., Micheloni, C.: Weakly-supervised domain adaptation of deep regression trackers via reinforced knowledge distillation. IEEE Rob. Autom. Let. 6(3), 5016–5023 (2021)

    Article  Google Scholar 

  10. Figueiredo, M., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007)

    Article  MathSciNet  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  12. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: IEEE/CVF CVPR, pp. 1604–1613 (2019)

    Google Scholar 

  13. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: IEEE, pp. 1664–1673 (2018)

    Google Scholar 

  14. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)

    Google Scholar 

  15. Huang, S., Teo, R., Leong, W., Martinel, N., Foresti, G.L., Micheloni, C.: Coverage control of multiple unmanned aerial vehicles: a short review. Unmanned Syst. 6(2), 131–144 (2018)

    Article  Google Scholar 

  16. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE CVPR, pp. 1646–1654 (2016)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  18. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  19. Lefkimmiatis, S.: Universal denoising networks: a novel cnn architecture for image denoising. In: IEEE CVPR, pp. 3204–3213 (2018)

    Google Scholar 

  20. Leong, W.L., Martinel, N., Huang, S., Micheloni, C., Foresti, G.L., Teo, R.S.H.: An intelligent auto-organizing aerial robotic sensor network system for urban surveillance. J. Intell. Rob. Syst. 102(2), 33 (2021)

    Article  Google Scholar 

  21. Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: IEEE/CVF CVPR, pp. 10601–10610 (2021)

    Google Scholar 

  22. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising. IEEE TIP 22(12), 5226–5237 (2013)

    Google Scholar 

  23. Lugmayr, A., Danelljan, M., Timofte, R.: NTIRE 2020 challenge on real-world image super-resolution: methods and results. In: CVPRW (2020)

    Google Scholar 

  24. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Unfolding the alternating optimization for blind super resolution. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  25. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  26. Martinel, N., Dunnhofer, M., Foresti, G.L., Micheloni, C.: Person re-identification via unsupervised transfer of learned visual representations. In: Proceedings of the 11th International Conference on Distributed Smart Cameras, pp. 151–156. ACM (2017)

    Google Scholar 

  27. Martinel, N., Dunnhofer, M., Pucci, R., Foresti, G.L., Micheloni, C.: Lord of the rings: hanoi pooling and self-knowledge distillation for fast and accurate vehicle reidentification. IEEE Trans. Ind. Inf. 18(1), 87–96 (2022)

    Article  Google Scholar 

  28. Martinel, N., Foresti, G.L., Micheloni, C.: Deep pyramidal pooling with attention for person re-identification. IEEE Trans. Image Process. 29, 7306–7316 (2020)

    Article  MATH  Google Scholar 

  29. Martinel, N., Micheloni, C., Foresti, G.L.: A pool of multiple person re-identification experts. Pattern Recogn. Lett. 71, 23–30 (2016)

    Article  MATH  Google Scholar 

  30. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  31. Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: IEEE ICCV, pp. 945–952 (2013)

    Google Scholar 

  32. Muhammad Umer, R., Luca Foresti, G., Micheloni, C.: Deep iterative residual convolutional network for single image super-resolution. In: ICPR (2021)

    Google Scholar 

  33. Umer, R.M., Micheloni, C.: Deep cyclic generative adversarial residual convolutional networks for real image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 484–498. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_29

    Chapter  Google Scholar 

  34. Shocher, A., Cohen, N., Irani, M: “Zero-shot” super-resolution using deep internal learning. In: IEEE CVPR, pp. 3118–3126 (2018)

    Google Scholar 

  35. Soh, J.W., Cho, S., Cho, N.I.: Meta-transfer learning for zero-shot super-resolution. In: IEEE/CVF CVPR, pp. 3516–3525 (2020)

    Google Scholar 

  36. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: CVPRW, pp. 114–125 (2017)

    Google Scholar 

  37. Umer, R.M., Foresti, G.L., Micheloni, C.: Deep super-resolution network for single image super-resolution with realistic degradations. In: ICDSC, pp. 21:1–21:7 (2019)

    Google Scholar 

  38. Umer, R.M., Foresti, G.L., Micheloni, C.: Deep generative adversarial residual convolutional networks for real-world super-resolution. In: IEEE/CVF CVPRW, pp. 438–439 (2020)

    Google Scholar 

  39. Umer, R.M., Micheloni, C.: Rbsricnn: raw burst super-resolution through iterative convolutional neural network. ar**v preprint ar**v:2110.13217 (2021)

  40. Umer, R.M., Micheloni, C.: Real image super-resolution using gan through modeling of lr and hr process. In: AVSS, pp. 1–8. IEEE (2022)

    Google Scholar 

  41. Umer, R.M., Munir, A., Micheloni, C.: A deep residual star generative adversarial network for multi-domain image super-resolution. In: SpliTech, pp. 01–05. IEEE (2021)

    Google Scholar 

  42. Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y.: Unsupervised degradation representation learning for blind super-resolution. In: IEEE/CVF CVPR, pp. 10581–10590 (2021)

    Google Scholar 

  43. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: ECCVW (2018)

    Google Scholar 

  44. Wei, P., Lu, H., Timofte, R., Lin, L., Zuo, W., et al.: AIM 2020 challenge on real image super-resolution: methods and results. In: ECCVW (2020)

    Google Scholar 

  45. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  46. Zhang, K., et al.: AIM 2020 challenge on efficient super-resolution: methods and results. In: ECCVW, pp. 5–40 (2020)

    Google Scholar 

  47. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE CVPR, pp. 586–595 (2018)

    Google Scholar 

  48. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV, pp. 286–301 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Hussain Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A.H., Umer, R.M., Dunnhofer, M., Micheloni, C., Martinel, N. (2023). LBKENet:Lightweight Blur Kernel Estimation Network for Blind Image Super-Resolution. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation