Sustainable Utilization of Anthropogenic Coal Fly Ash Through Mechanical and Chemical Activation

  • Chapter
  • First Online:
Anthropogenic Environmental Hazards
  • 109 Accesses

Abstract

Anthropogenic coal fly ash (CFA) is a pozzolanic material comprises silico-alumina, making it an excellent secondary raw material with a range of applications. It is utilized for wastewater treatment, extraction of valuable minerals, and the production of ceramics, cement, concrete, building materials, composites, paints, and plastic materials. The crystalline and amorphous phases of CFA contain metals and metalloid oxides, with the amorphous portion playing a significant role in chemical reactions. However, the direct use of coal fly ash poses challenges due enriched potentially toxic trace elements. Nevertheless, the upstream extraction of valuable minerals and efficient downstream applications of CFA can be improved through mechanical and/or chemical activation. Industrial and laboratory-scale purification and modification of coal fly ash by size reduction, surface modification, and functionalization are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmaruzzaman A (2010) A review on the utilization of fly ash. Prog Energ Combust Sci 36:327–363

    Article  CAS  Google Scholar 

  • Al-Harahsheh MS, AlZboon K, Al-Makhadmeh L, Hararah M, Mahasneh M (2015) Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J Environ Chem Eng 3:1669–1677

    Article  CAS  Google Scholar 

  • Al-Qayim K, Nimmo W, Hughes K, Pourkashanian M (2017) Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis. Fuel 210:811–825

    Article  CAS  Google Scholar 

  • Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L (2008) Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag 28:416–423

    Article  CAS  Google Scholar 

  • ASTM C 618-00 (2000) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Annual Book of ASTM Standards, Philadelphia

    Google Scholar 

  • Aydin S, Karatay C, Baradan B (2010) The effect of grinding process on mechanical properties and alkali-silica reaction of fly ash incorporated cement mortar. Powder Tecnol 197:68–72

    Article  CAS  Google Scholar 

  • Bartoňová L (2015) Unburned carbon from coal combustion ash: an overview. Fuel Process Technol 134:136–158

    Article  Google Scholar 

  • Bentz DP (2010) Powder additions to mitigate retardation in high-volume fly ash mixtures. ACI Mater J 107:508–514

    CAS  Google Scholar 

  • Bentz DP, Ferraris CF (2010) Rheology and setting of high volume fly ash mixtures. Cem Concr Compos 32:265–270

    Article  CAS  Google Scholar 

  • Bhatt A, Priyadarshini S, Mohanakrishnan AA, Abri A, Sattler M, Techapaphawit S (2019) Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater 11:e00263

    Google Scholar 

  • Bilgili E, Scarlett B (2005) Population balance modeling of non-linear effects in milling processes. Powder Technol 153:59–71

    Article  CAS  Google Scholar 

  • Bilgili E, Hamey R, Scarlett B (2006) Nano-milling of pigment agglomerates using a wet stirred media mill: elucidation of the kinetics and breakage mechanisms. Chem Eng Sci 61:149–157

    Article  CAS  Google Scholar 

  • Bilodeau A, Malhotra V (2000) High-volume fly ash system: concrete solution for sustainable development. ACI Mater J 97:41–48

    CAS  Google Scholar 

  • Blicharz EG, Panek R, Franus M, Franus W (2022) Mechanochemically assisted coal fly ash conversion into zeolite. Materials 15:7174

    Article  Google Scholar 

  • Borm JAP (1997) Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparision to coal mine dust. Ann Occup Hyg 41:659–676

    Article  CAS  Google Scholar 

  • Bouzoubaa N, Zhang MH, Bilodeau A, Malhotra VM (1997) The effect of grinding on the physical properties of fly ashes and a Portland cement clinker. Cem Concr Res 27:1861–1874

    Article  CAS  Google Scholar 

  • Brouwers HJH, Van Eijk RJ (2002) Reactivity of fly ash: extension and application of a shrinking core model. J Mater Sci 37:2129–2141

    Article  CAS  Google Scholar 

  • Capece M, Bilgili E, Dave R (2011) Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technol 208:195–204

    Article  CAS  Google Scholar 

  • Carlson CL, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:27–247

    Article  Google Scholar 

  • Chancey RT, Stutzman P, Juenger MCG, Fowler DW (2010) Comprehensive phase characterization of crystalline and amorphous phases of a class F fly ash. Cem Concr Res 40:146–156

    Article  CAS  Google Scholar 

  • Chen Y, Lian X, Li Z, Zheng S, Wang Z (2015) Effects of rotation speed and media density on particle size distribution and structure of ground calcium carbonate in a planetary ball mill. Adv Powder Technol 26:505–510

    Article  Google Scholar 

  • Dash S, Panda L, Mohanty I, Gupta P (2022) Comparative feasibility analysis of fly ash bricks, clay bricks and fly ash incorporated clay bricks. Mag Civil Eng 115:11502

    Google Scholar 

  • El Alouani M, Alehyen S, El Achouri M, Taibi MH (2019) Comparative study of the adsorption of micropollutant contained in aqueous phase using coal fly ash and activated coal fly ash: kinetic and isotherm studies. Chem Data Collec 23:100265

    Article  Google Scholar 

  • Felekoglu B, Trkel S, Kalyoncu H (2009) Optimization of fineness to maximize the strength activity of high-calcium ground fly ash—Portland cement composites. Construct Build Mater 23:2053–2061

    Article  Google Scholar 

  • Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. J Braz Chem Soc 27:2034–2045

    CAS  Google Scholar 

  • Gautam S, Guria C, Rajak DK, Pathak AK (2018) Functionalization of fly ash for the substitution of bentonite in drilling fluid. J Petrol Sci Eng 166:63–72

    Article  CAS  Google Scholar 

  • Geng X, Duan Y, Zhao S, Hu J, Zhao W (2021) Mechanism study of mechanochemical bromination on fly ash mercury removal adsorbent. Chemosphere 274:129637

    Article  CAS  Google Scholar 

  • Gollakota AR, Volli V, Shu CM (2019) Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672:951–989

    Article  CAS  Google Scholar 

  • Goodarzi F, Sanei H (2009) Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel 88:382–386

    Article  CAS  Google Scholar 

  • Grabias-Blicharz E, Franus W (2022) A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Sci Total Environ 860:160529

    Article  Google Scholar 

  • Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, FernándezPereira C (2009) Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J Hazard Mater 166:561–566

    Article  CAS  Google Scholar 

  • Juenger MCG, Winnefeld F, Provis JL, Ideker JH (2011) Advances in alternative cementitious binders. Cem Concr Res 41:1232–1243

    Article  CAS  Google Scholar 

  • Kaewmee P, Song M, Iwanami M, Tsutsumi H, Takahashi F (2020) Porous and reusable potassium-activated geopolymer adsorbent with high compressive strength fabricated from coal fly ash wastes. J Clean Prod 272:122617

    Article  CAS  Google Scholar 

  • Kapur PC, Fuerstenau DW (1987) Energy-size reduction laws revisited. Int J Miner Process 20:45–57

    Article  CAS  Google Scholar 

  • Kapur PC, Fuerstenau DW, De A (2003) Modelling breakage kinetics in various dry comminution systems. KONA Powder Part J 21:121–132

    Article  Google Scholar 

  • Kelechi SE, Adamu M, Uche OAU, Okokpujie IP, Ibrahim YE, Obianyo II (2022) A comprehensive review on coal fly ash and its application in the construction industry. Cogent Eng 9:2114201

    Article  Google Scholar 

  • Khatri C, Rani A (2008) Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87:2886–2892

    Article  CAS  Google Scholar 

  • Khatri C, Jain D, Rani A (2010) Fly ash-supported cerium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel 89:3853–3859

    Article  CAS  Google Scholar 

  • Kumar S, Kumar R (2011) Mechanical activation of fly ash: effect on reaction structure and properties of resulting geopolymer. Ceram Int 37:533–541

    Article  CAS  Google Scholar 

  • Kumar R, Kumar S, Mehrotra SP (2007) Towards sustainable solutions for fly ash through mechanical activation. Resour Conserv Recy 52:157–179

    Article  Google Scholar 

  • Kutchko BG, Kim AG (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544

    Article  CAS  Google Scholar 

  • Lee WKW, Van Deventer JSJ (2002) Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf A Physicochem Eng Aspects 211:49–66

    Article  CAS  Google Scholar 

  • Lee HK, Kim HK, Hwang EA (2010) Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete. Waste Manag 30:274–284

    Article  CAS  Google Scholar 

  • Li MG, Sun CJ, Gau SH, Chuang CJ (2010) Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J Hazard Mater 174:586–591

    Article  CAS  Google Scholar 

  • Mio H, Kano J, Saito F, Kaneko K (2004) Optimum revolution and rotational directions and their speeds in planetary ball milling. Int J Miner Process 74:85–92

    Article  Google Scholar 

  • Nidheesh PV, Kumar MS (2019) An overview of environmental sustainability in cement and steel production. J Clean Prod 231:856–871

    Article  Google Scholar 

  • Nugteren HW, Butselaar-Orthlieb VCL, Izquierdo M (2009) High strength geopolymers produced from coal combustion fly ash. Global NEST J 11:155–161

    Google Scholar 

  • Page AL, Elseewi A, Straughan IR (1979) Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts. In: Gunther FA, Gunther JD (eds) Residue reviews: residues of pesticides and other contaminants in the total environment. Springer, New York

    Google Scholar 

  • Palomo, A, Jimenez, FA (2011) Alkaline activation, procedure for transforming fly ash into new materials. Part I: Application. World of coal ash (WOCA) conference, May 9–12, 2011 in Denver, CO, USA

    Google Scholar 

  • Park J, Bae S (2018) Formation of Fe nanoparticles on water-washed coal fly ash for enhanced reduction of p-nitrophenol. Chemosphere 202:733–741

    Article  CAS  Google Scholar 

  • Patil AG, Anandhan S (2015) Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash. Powder Technol 281:151–158

    Article  CAS  Google Scholar 

  • Paul KT, Satpathy SK, Manna I, Chakraborty KK, Nando GB (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2:397–404

    Article  CAS  Google Scholar 

  • Pietersen HS (1990) Reactivity of fly ash at high pH. Mater Res Soc Symp Proc 178:139–157

    Article  CAS  Google Scholar 

  • Provis JL, Van Deventer JS (2013) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM, vol 13. Springer Science & Business Media, South Yorkshire

    Google Scholar 

  • Rajak DK, Guria C, Ghosh R, Agarwal S, Pathak AK (2016) Alkali assisted dissolution of fly ash: a shrinking core model under finite solution volume condition. Int J Miner Process 155:106–117

    Article  CAS  Google Scholar 

  • Rajak DK, Raj A, Guria C, Pathak AK (2017) Grinding of class-F fly ash using planetary ball mill: a simulation study to determine the breakage kinetics by direct-and back-calculation method. S Afr J Chem Eng 24:135–147

    Google Scholar 

  • Rezaei H, Shafaei SZ, Abdollahi H, Shahidi A, Ghassa S (2022) A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: sodium salts roasting and organic acids leaching. Fuel 312:122844

    Article  CAS  Google Scholar 

  • Rowles MR, O’Connor BH (2009) Chemical and structural microanalysis of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite. J Am Ceram Soc 92(10):2354–2361. https://doi.org/10.1111/j.1551-2916.2009.03191.x

    Article  CAS  Google Scholar 

  • Schmücker M, MacKenzie KJ (2005) Microstructure of sodium polysialatesiloxo geopolymer. Ceram Int 31:433–437

    Article  Google Scholar 

  • Sear LKA (2001) Properties and use of coal fly ash: a valuable industrial by-product. Thomas Telford, London

    Book  Google Scholar 

  • Sharma A (2012) Modification in properties of fly ash through mechanical and chemical activation. Am Chem Sci J 2:177–187

    Article  CAS  Google Scholar 

  • Sharonova OM, Anshits NN, Fedorchak MA, Zhizhaev AM, Anshits AG (2015) Characterization of ferrospheres recovered from high-calcium fly ash. Energy Fuel 29:5404–5414

    Article  CAS  Google Scholar 

  • Singh RK, Gupta NC, Guha BK (2016) Fly ash disposal in ash ponds: a threat to ground water contamination. J Inst Eng India Ser A 97:255–260

    Article  Google Scholar 

  • Srivastava RR, Rajak DK, Ilyas S, Kim H, Pathak P (2023) Challenges, regulations, and case studies on sustainable management of industrial waste. Fortschr Mineral 13:51

    CAS  Google Scholar 

  • Stockel RF, Bridgewater NJ (1984) Coal ash fertilizer compositions. United States Patent, 4469503

    Google Scholar 

  • Temuu** J, Minjigmaa A, Rickard W, Lee M, Williams I, vanRiessen A (2010a) Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J Hazard Mater 180:748–752

    Article  CAS  Google Scholar 

  • Temuu** J, VanRiessen A, MacKenzie KJD (2010b) Preparation and characterisation of fly ash based geopolymer mortars. Construct Build Mater 24:1906–1910

    Article  Google Scholar 

  • The European Committee for Standardization (2012) Fly ash for concrete—part 1: definition, specification and conformity criteria. The European Committee for Standardization (CEN), EN 450-1. Brussels, Belgium

    Google Scholar 

  • Tian Y, Zhu X, Zhou S, Zhao W, Xu Q, Liu X (2023) Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst. J Bioresour Bioprod 8:198–213

    Article  CAS  Google Scholar 

  • Van Dyk JC, Benson SA, Laumb ML, Waanders B (2009) Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel 88:1057–1063

    Article  Google Scholar 

  • Vassilev SV, Vassileva CG (2005) Methods for characterization of cmposition of fly ashes from coal-fired power stations: a critical overview. Energy Fuel 19:1084–1098

    Article  CAS  Google Scholar 

  • Vassilev SV, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona MR (2003) Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes. Fuel 82:1793–1811

    Article  CAS  Google Scholar 

  • Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42:7055–7063

    Article  CAS  Google Scholar 

  • Watanabe H (1999) Critical rotation speed for ball-milling. Powder Technol 104:95–99

    Article  CAS  Google Scholar 

  • Wigley F, Williamson J, Gibb WH (1997) The distribution of mineral matter in pulverised coal particles in relation to burnout behaviour. Fuel 76:1283–1288

    Article  CAS  Google Scholar 

  • **yili H, ÇetintaÅŸ S, Bingöl D (2017) Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics. Process Saf Environ Prot 109:288–300

    Article  CAS  Google Scholar 

  • Yadav VK, Fulekar MH (2020) Advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. Ceramics 3:384–420

    Article  CAS  Google Scholar 

  • Zhang L, Ahmari S, Zhang J (2011) Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Construct Build Mater 25:3773–3781

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Indian Institute of Technology (Indian School of Mines), Dhanbad, India, and Institute of Engineering, Pulchowk Campus, Tribhuvan University, Nepal.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Suman, S., Guria, C., Kumar, G. (2023). Sustainable Utilization of Anthropogenic Coal Fly Ash Through Mechanical and Chemical Activation. In: Pathak, P., Srivastava, R.R., Ilyas, S. (eds) Anthropogenic Environmental Hazards. Springer, Cham. https://doi.org/10.1007/978-3-031-41013-0_7

Download citation

Publish with us

Policies and ethics

Navigation