A Personal Discussion on Conservation, and How to Formulate It

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems (FVCA 2023)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 432))

Included in the following conference series:

  • 309 Accesses

Abstract

Since the celebrated theorem of Lax and Wendroff, we know a necessary condition that any numerical scheme for hyperbolic problem should satisfy: it should be written in flux form. A variant can also be formulated for the entropy. Even though some schemes, as for example those using continuous finite element, do not formally cast into this framework, it is a very convenient one. In this paper, we revisit this, introduce a different notion of local conservation which contains the previous one in one space dimension, and explore its consequences. This gives a more flexible framework that allows to get, systematically, entropy stable schemes, entropy dissipative ones, or accommodate more constraints. In particular, we can show that continuous finite element method can be rewritten in the finite volume framework, and all the quantities involved are explicitly computable. We end by presenting the only counter example we are aware of, i.e a scheme that seems not to be rewritten as a finite volume scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If the set S is discrete, \(\vert S\vert \) is its cardinal. If S is part of a domain, it is its measure with respect to the lebesgue measure, i.e. its length/area/volume.

  2. 2.

    This is the essence of Roe’s 1981 paper: setting \(\varPhi _i^{[x_i, x_{i+1}]}=a^-_{i+1/2}(\textbf{u}_{i+1}-\textbf{u}_i)\) and \(\varPhi _{i+1}^{[x_i, x_{i+1}]}=a_{j+1/2}^+(\textbf{u}_{i+1}-\textbf{u}_i)\), we see that the method of characteristics (8) is conservative if and only if \({\textbf{f}}(\textbf{u}_{i+1})-{\textbf{f}}(\textbf{u}_i)=a_{i+1/2}(\textbf{u}_{i+1}-\textbf{u}_i)\).

References

  1. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666 (2018)

    Google Scholar 

  2. Abgrall, R.: A combination of residual distribution and the active flux formulations or a new class of schemes that can combine several writings of the same hyperbolic problem: application to the 1d Euler equations. Commun. Appl. Math. Comput. 5, 370–402 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Bacigaluppi, P., Tokareva, S.: A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods. I: Linear problems. J. Sci. Comput. 85(2), 28 (2020). Id/No 43

    Google Scholar 

  5. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part II: entropy stability. Commun. Appl. Math. Comput. (2021)

    Google Scholar 

  6. Abgrall, R.: Some remarks about conservation for residual distribution schemes. Comput. Methods Appl. Math. 18(3), 327–351 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abgrall, R.: Staggered residual distribution scheme for compressible flow (2021). in revision

    Google Scholar 

  8. Abgrall, R., Busto, S., Dumbser, M.: A simple and general framework for the construction of thermodynamically compatible schemes for computational fluid and solid mechanics. Appl. Math. Comput. 440, 40 (2023). Id/No 127629

    Google Scholar 

  9. Abgrall, R., Lipnikov, K., Morgan, N., Tokareva, S.: Multidimensional staggered grid residual distribution scheme for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 42(1), a343–a370 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abgrall, R., Luckacova-Medvid’ova, M., Oeffner, P.: On the convergence of residual distribution schemes for the compressible Euler equations via dissipative weak solutions. M3AS 33(1), 139–173 (2023). ar**v:2207.11969

  11. Abgrall, R., Mojarrad, F.N.: Conservative scheme compatible with some other conservation laws: conservation of the local angular momentum. Comput. Fluids 247, 15 (2022). Id/No 105663

    Google Scholar 

  12. Abgrall, R., Öffner, P., Ranocha, H.: Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: application to structure preserving discretization. J. Comput. Phys. 453, 24 (2022). Id/No 110955

    Google Scholar 

  13. Abgrall, R., Tokareva, S.: Staggered grid residual distribution scheme for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 39(5), a2317–a2344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barsukow, W., Abgrall, R.: Extensions of active flux to arbitrary order of accuracy. ESAIM: M2AN. in press. https://doi.org/10.1051/m2an/2023004

  15. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der Mathematischen Wissenschaften, vol. 325. Springer, Berlin (2016)

    Google Scholar 

  16. Dobrev, V.A., Kolev, T.V., Rieben, R.N.: High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), b606–b641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eyman, T.A., Roe, P.L.: Active flux. In: 49th AIAA Aerospace Science Meeting (2011)

    Google Scholar 

  18. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, 2nd edn. Applied Mathematical Sciences, vol. 118. Springer, New York, NY (2021)

    Google Scholar 

  19. Hou, T.Y., Le Floch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62(206), 497–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iserles, A.: Order stars and saturation theorem for first-order hyperbolics. IMA J. Numer. Anal. 2, 49–61 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17(5), 1019–1039 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maire, P.-H.: A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry. J. Comput. Phys. 228(18), 6882–6915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vilar, F., Abgrall, R.: A Posteriori local subcell correction of high-order discontinuous galerkin scheme for conservation laws on two-dimensional unstructured grids (2022). submitted

    Google Scholar 

  24. Wilkins, M.L.: Methods in Computational Physics, vol. 3. Academic Press, New York (1964)

    Google Scholar 

Download references

Acknowledgements

I take this opportunity to thanks my many collaborators and students: M. Ricchiuto (Inria), P.H. Maire (Cea), F. Vilar (Montpellier), R. Loubère (Bordeaux), Ph. Öffner (Mainz), W. Barsukow (Bordeaux), M. Dumbser (Trento), S. Busto (Vigò), S. Tokareva (Los Alamos), P. Baccigaluppi (Milano), L. Micalizzi (Zürich), A. Larat (Grenoble), M. Mezine (Numeca), M. Lukakova (Mainz). Without them nothing would have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Abgrall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abgrall, R. (2023). A Personal Discussion on Conservation, and How to Formulate It. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-031-40864-9_1

Download citation

Publish with us

Policies and ethics

Navigation