Analysis of Factors Affecting the Interannual Variability of Antarctic Ozone

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

An analysis of the reasons for the alternation of winter-spring periods with high and low stratospheric ozone in the Antarctic region for the period from 1980 to 2020 is presented. Linear trends were calculated for three periods—from 1980 to 2020, from 1980 to 1999 and from 2000 to 2020 The influence of the meridional and zonal wind velocities at the boundary of the polar region on the formation of zones with low temperatures and ozone content has been studied. Based on the MERRA-2 reanalysis data, the correlation coefficients between the ozone content and the zonal and meridional wind velocities were calculated. We found out that the meridional wind speed at the boundary of the polar zone, which characterize the exchange of air between the middle and polar latitudes, along with the zonal wind, can serve as an indicator of the degree of isolation of the polar region, which is the main dynamic factor determining the ozone content in the polar stratosphere in winter–spring period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrov, E. L., Israel, Yu. A., Karol, I. L., Khrgian, A. Kh.: Ozone shield of the earth and its changes; Gidrometeoizdat: St. Petersburg, Russia, p. 288 ( 1992)

    Google Scholar 

  2. Smyshlyaev, S.P., Blakitnaya, P.A., Motsakov, M.A. Numerical modeling of the influence of physical and chemical factors on the interannual variability of the ozone content in the Antarctic. Meteorology and hydrology, 3, 21-32 (2020)

    Google Scholar 

  3. Bodeker, G. E., Kremser, S. Indicators of Antarctic ozone depletion: 1979 to 2019, Atmos. Chem. Phys., 21, 5289–5300 (2021)

    Article  ADS  Google Scholar 

  4. Morgenstern, O., Frith, S. M., Bodeker, G. E., Fioletov, V., van der A, R. J. Reevaluation of total-column ozone trends and of the effective radiative forcing of ozone-depleting substances. Geophys. Res. Lett., 48, e2021GL095376 (2021)

    Google Scholar 

  5. Newman, P.A., Nash, E.R. The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 62, 614–628 (2005)

    Article  ADS  Google Scholar 

  6. Safieddine, S., Bouillon, M., Paracho, A.C., Jumelet, J., Tencé, F., Pazmino, A., Goutail, F. et al. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett., 47, e2020GL087810 (2020)

    Google Scholar 

  7. Harvey V.L., Pierce, R.B., Fairlie, T.D., Hitchman, M.H. A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res., 107, 4442, doi:https://doi.org/10.1029/2001JD001471 (2002)

  8. Hamil, P., Toon, O.B. Polar stratospheric clouds and the ozone hole. Physics today, 44, 34–42 (1991)

    Article  ADS  Google Scholar 

  9. Finlayson-Pitts, B.J., Pitts, J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, p. 969 (2000)

    Google Scholar 

  10. Newman, P. A., Kawa, S. R., Nash, E. R. On the size of the Antarctic ozone hole. Geophys. Res. Lett., 31, L21104 (2004)

    Article  ADS  Google Scholar 

  11. Newman, P.A., Daniel, J.S., Waugh, D.W., Nash, E.R. A new formulation of equivalent effective stratospheric chlorine (EESC). 373 Atmos. Chem. Phys., 7, 4537– 4552 (2007)

    Google Scholar 

  12. Schoeberl, M.R., Hartmann, D.L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 46–52 (1991)

    Google Scholar 

  13. Zuev V.V., Zueva N. E., Savelieva E.S. Influence of the stratospheric polar vortex on the tropospheric vortex dynamics in winter, Proc. SPIE 11560, 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, 115607P (2020)

    Google Scholar 

  14. Koval A.V., Calculation of the residual mean meridional circulation according to the middle and upper atmosphere model, Scientific notes of the RSHU, 55, 25-35 (2019)

    Google Scholar 

  15. Haynes, P.H., Marks, C.J., Mcintyre, M.E., Shepherd, T.G., Shine, K.P. On the “downward control” of extratropical diabatic circulations by eddy induced mean zonal forces. J. Atmos. Sci., 48, 651–678 (1991)

    Article  ADS  Google Scholar 

  16. Brunet, G., Montgomery, M.T. Vortex Rossby waves on smooth circular vortices: Part I. Theory. Dynam. Atmos. Oceans., 35, 153-177 (2002)

    Article  ADS  Google Scholar 

  17. Polvani, L.M.; Plumb, R.A. Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462–476 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Pogoreltsev, A.I., Savenkova, E.N., Pertsev, N.N. Sudden stratospheric warmings: the role of normal atmospheric modes. Geomagnetism and Aeronomy, 54, 387–403 (2014)

    Article  ADS  Google Scholar 

  19. Savenkova E.N., Gavrilov N.M, Pogoreltsev A.I, and Manuilova R.O. Statistical Inhomogeneity of Dates of Sudden Stratospheric Warmings in the Wintertime Northern Hemisphere. Izvestiya, Atmospheric and Oceanic Physics, 53, 251–258 (2017)

    Google Scholar 

  20. Gray, L.A, Norton, W, Pascoe, C, Charlton, A. Possible influence of equatorial winds on the September 2002 Southern Hemisphere sudden warming event. J. Atmos. Sci., 62, 651–667 (2005)

    Article  ADS  Google Scholar 

  21. Shindell D.T., Wong S., Rind D. Interannual variability of the Antarctic ozone hole in a GCM. Part 1: The influence of tropospheric wave variability. J. Atmos. Sci., 54, 2308–2319 (1997)

    Article  Google Scholar 

  22. Newman P.A., Nash E.R., Rosenfield J.E. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19999-2001 (2001)

    Article  ADS  Google Scholar 

  23. Holton, J.R., Tan, H.C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208 (1980)

    Article  ADS  Google Scholar 

  24. Garfinkel, C.I., Waugh, D.W., Oman, L.D., Wang, L., Hurwitz, M.M. Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J. Geophys. Res., 118, 9658–9672 (2013)

    Google Scholar 

  25. Drobashevskaya, E.A.; Pogoreltsev, A.I; Smyshlyaev, S.P. Response of the extratropical stratosphere to the El Niño events of the Southern Oscillation during the spring circulation restructuring. Proceedings of the A.F. Mozhaisky Military Space Academy, 662, 33–36 (2018) (in Russian)

    Google Scholar 

  26. Yakovlev, A.R., Smyshlyaev, S.P. Numerical modeling of the global impact of the ocean and the El Niño and La Niña phenomena on the structure and composition of the atmosphere. Scientific notes of the RSHU, 49, 58–72 (2017)

    Google Scholar 

  27. Heath, D.F., Krueger, A.J., Roeder, H.A., Henderson, B.D. Solar Backscatter Ultraviolet and Total Ozone Map** Spectrometer (SBUV-TOMS) for Nimbus G. Opt. Eng., 14, 323–331. (1975)

    Article  ADS  Google Scholar 

  28. Wargan, K., Labow, G.J., Frith, S.M., Pawson, S., Livesey, N.J., Partyka, G.S. Evaluation of the Ozone Fields in NASA's MERRA- 2 Reanalysis. J. Clim., 30, 2961–2988 (2017)

    Article  ADS  Google Scholar 

  29. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim., 24, 3624–3648 (2011)

    Article  ADS  Google Scholar 

  30. Wargan, K., Orbe, C., Pawson, S., Ziemke, J.R., Oman, L.D., Olsen, M., Coy, L., Recent decline in lower stratospheric ozone attributed to circulation changes. Geophys. Res. Lett., 45, 5166-5176 (2018)

    Article  ADS  Google Scholar 

  31. Smyshlyaev, S.P, Galin, V.Ya., Shaariibuu, G., Motsakov, M.A. Modeling the variability of gas and aerosol components in the stratosphere of the polar regions. Izvestiya, Atmospheric and Oceanic Physics, 46, 265–280 (2010)

    Google Scholar 

  32. World Meteorological Organization (WMO), 2015 Ozone Hole One of the Largest on Record. Meteoworld, December 2015. Available online: https://public.wmo.int/en/resources/meteoworld/2015-ozone-hole-one-of-largest-record. Last accessed 2022/11/06

  33. World Meteorological Organization (WMO), Antarctic ozone hole is smallest on record. News, 24 October 2019. Available online: https://public.wmo.int/en/media/news/antarctic-ozone-hole-smallest-recordrecord. Last accessed 2022/11/06

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia S. Imanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imanova, A.S., Smyshlyaev, S.P., Rozanov, E.V. (2023). Analysis of Factors Affecting the Interannual Variability of Antarctic Ozone. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_3

Download citation

Publish with us

Policies and ethics

Navigation