Recovery of Nutrients from Wastewater

  • Chapter
  • First Online:
Wastewater Resource Recovery and Biological Methods

Abstract

Macronutrients like phosphorous (P) and Nitrogen (N) or nutrients like Calcium (Ca) and Potassium (K) could be recovered from wastewater. Recently, several technologies like enhanced biological phosphorous removal, chemical and electrical precipitation of nitrogen, microalgae-based methods to recover nitrogen, struvite transformed into fertilizer, use of UV light, and others have been proposed to recover nutrients from wastewater. The depletion of phosphoric rock and the escalating prices of obtaining Ca, K, and N, and the advances in wastewater treatments have paved the way to develop new technologies or to improve the efficiency of the current ones. This is a worldwide trend encompassing industrial powerhouses, and third world countries economies. We discuss: (a) the conditions that brought the world to this emerging situation, (b) the technologies that used, modified, or recently emerged to cope with this situation, (c) the economics of nutrient recovery from wastewater, (d) suggest new proposals for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acién Fernández FG, María J (2018) Recovery of nutrients from wastewaters using microalgae. Front Sustain Food Syst 2:396930. https://doi.org/10.3389/fsufs.2018.00059

  • Azlan K, Wan Saime WN, Lai Ken L (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21(3):296–302.https://doi.org/10.1016/S1001-0742(08)62267-6

  • Cañadas R, González-Miquel M, González EJ, Núñez de Prado A, Díaz I, Rodríguez M (2021) Sustainable recovery of high added-value vanilla compounds from wastewater using green solvents. Sustain Chem Eng 9(13):4850–4862. https://doi.org/10.1021/acssuschemeng.1c00168

    Article  CAS  Google Scholar 

  • Ciputra S, Antony A, Phillips R, Richardson D, Leslie G (2010) Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent. Chemosphere 81:86–91. https://doi.org/10.1016/j.chemosphere.2010.06.060

  • Ekstrand E, Larsson M, Truong X, Cardell L, Borgström Y, Björn A, Ejlertsson J, Svensson BH, Nilsson F, Karlsson A (2013) Methane potentials of the Swedish pulp and paper industry—a screening of wastewater effluents. Appl Energy 112:507–517. https://doi.org/10.1016/j.apenergy.2012.12.072

    Article  CAS  Google Scholar 

  • Erickson LD, Holman KL (1986) Non-process element flows and control in a Kraft pulp mill. In: Ferhan K, Krieger-Brockett B (eds) Applications of chemical engineering principles in the forest products and related industries, vol 1. AIChE Forest Products Division, New York

    Google Scholar 

  • Erkan HS, Engin GÖ (2019) Calcium removal from calcium rich paper mill wastewater by microbial CaCO3 precipitation, pp 352–363. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi.https://doi.org/10.25092/baunfbed.547195

  • Eskelinen K, Särkkä H, Kurniawan TA, Sillanpää ME (2010) Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: a comparative study. Desalination 255(1–3):179–187. https://doi.org/10.1016/j.desal.2009.12.024

    Article  CAS  Google Scholar 

  • Gianni E, Lazaratou CV, Panagopoulos G, Sarantari P, Martsouka F, Papagiannopoulos K, Panagiotaras D, Papoulis D (2021) Raw and modified palygorskite in water treatment applications for low-concentration ammonium removal. Water Environ Res 93(10):1979–1994

    Article  CAS  PubMed  Google Scholar 

  • Gubelt G, Lumpe C, Joore L (2000) Towards zero liquid effluents at Niederauer Muhle—the validation of two noval separation technologies. Pap Technol (UK) 41(8):41–48

    CAS  Google Scholar 

  • Itakura T, Sasai R, Itoh H (2005) Precipitation recovery of boron from wastewater by hydrothermal mineralization. Water Res 39(12):2543–2548. https://doi.org/10.1016/j.watres.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  • Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342. https://doi.org/10.1016/j.ecoenv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Das A, Goel M, Kumar KR, Subramanyam B, Sudarsan JS (2013) Recovery of nutrients from wastewater by struvite crystallization. Nat Environ Pollut Technol 12(3):479–482. https://neptjournal.com/index.php/search/Recovery%20of%20Nutrients%20from%20Wastewater%20by%20Struvite%20Crystallization

  • Keitaanniemi O, Virkola N-E (1978) Amounts and behaviour of certain chemical elements in kraft pulp manufacture: results of a mill scale study. Pap Puu 60:507–522

    CAS  Google Scholar 

  • Lei Y, Hidayat I, Saakes M, van der Weijden R, Buisman CJN (2019) Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater. Chemical Eng J 362:453–459. https://doi.org/10.1016/j.cej.2019.01.056

  • Liberti L, Petruzzelli D, De Florio L (2001) REM NUT ion exchange plus struvite precipitation process. Environ Technol 22(11):1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Lindholm-Lehto PC, Knuutinen JS, Ahkola HS, Herve SH (2015) Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ Sci Pollut Res 22(9):6473–6499. https://doi.org/10.1007/s11356-015-4163-x

    Article  CAS  Google Scholar 

  • Liu Y, Kumar S, Kwag H, Ra C (2013) Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol 88(2):181–189. https://doi.org/10.1002/jctb.3936

  • Monetti J, Ledezma P, Virdis B, Freguia S (2019) Nutrient recovery by bio-electroconcentration is limited by wastewater conductivity. ACS Omega 2019 4(1):2152–2159. https://doi.org/10.1021/acsomega.8b02737

  • Nemerow NL, Dasgupta A (1991) Industrial and hazardous waste treatment. Van Nostrand Reinhold, USA

    Google Scholar 

  • Perera MK, Englehardt JD, Dvorak AC (2019) Technologies for recovering nutrients from wastewater: a critical review. Environ Eng Sci 36(5):511–531

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333(1–3):37–58. https://doi.org/10.1016/j.scitotenv.2004.05.017

  • Rahimi S, Modinb O, Mijakovic I (2020) Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 43:107570

    Article  CAS  PubMed  Google Scholar 

  • Rajvaidya N, Markandey DK (1998) Advances in environmental science and technology: treatment of pulp and paper industrial effluent. A.P.H. Publishing, Ansari Road, New Delhi, India

    Google Scholar 

  • Rudie A (2000) Calcium in pul** and bleaching. Tappi J 83(12):36–37

    CAS  Google Scholar 

  • Shahid K, Ramasamy DL, Sillanpää M (2021) Chitosan beads as a bioanode for simultaneous recovery of nutrients and energy from municipal wastewater using a microbial nutrient recovery cell. J Cleaner Product 298:126756. https://doi.org/10.1016/j.jclepro.2021.126756

  • Sainlez M, Heyen G (2013) Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill. J Comput Appl Math 246:329–334. https://doi.org/10.1016/j.cam.2012.06.026

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta S, Nawaz T, Beaudry J (2015) Nitrogen and phosphorous recovery from wastewater. Curr Pollution Rep 1:155–166

    Article  CAS  Google Scholar 

  • Shawwa AR, Smith DW, Sego DC (2001) Color and chlorinated organics removal from pulp mills wastewater using activated petroleum Coke. Water Res 35(3):745–749. https://doi.org/10.1016/s0043-1354(00)00322-5

    Article  CAS  PubMed  Google Scholar 

  • Sheela V, Distidar MG (1989) Treatment of black liquor wastes from small paper mills. Indian J Environ Prot 9(9):661–666

    CAS  Google Scholar 

  • Thompson G, Swain J, Kay M, Forster C (2001) The treatment of pulp and paper mill effluent: a review. Biores Technol 77(3):275–286. https://doi.org/10.1016/s0960-8524(00)00060-2

    Article  CAS  Google Scholar 

  • Tran ATK, Zhang Y, De Corte D, Hannes J-B, Ye W, Mondal P, Jullok N, Meesschaert B, Pinoy L, Van der Bruggen B (2014) P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. J Clean Prod 77:140–151. https://doi.org/10.1016/j.jclepro.2014.01.069

    Article  CAS  Google Scholar 

  • Wang J, Chen Y, Wang Y, Yuan S, Yu H (2011) Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Res 45(17):5633–5640. https://doi.org/10.1016/j.watres.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  • Wenta B, Hartmen B (2002) Dissolved air flotation system improves wastewater treatment at Glatfelter. Pulp Pap 76(3):43–47

    CAS  Google Scholar 

  • Werkelin J, Skrifvar B, Hupa M (2005) Ash-forming elements in four scandinavian wood species. Part 1: summer harvest. Biomass Bioenergy 29(6):451–466. https://doi.org/10.1016/j.biombioe.2005.06.005

  • Wistara NJ, Yustiana E (2014) Trace elements measurement of Mangium wood (Acacia mangium) by AAS. J Ilmu Dan Teknol Kayu Tropis 12:1

    Google Scholar 

  • Ye Z-L, Ghyselbrecht K, Monballiu A, Pinoy L, Meesschaert B (2019) Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis. Water Res. https://doi.org/10.1016/j.watres.2019.05.085

  • Zhang X, Fang Q, Zhang T, Ma W, Velthof GL, Hou Y, Oenema O, Zhang F (2019) Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: a meta-analysis. Glob Change Biol 26:888–900

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rico Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Legaspi, I.A., Santos-Medrano, G.E., Rubio-Franchini, I., Martínez, R.R. (2023). Recovery of Nutrients from Wastewater. In: Singh, P., Verma, P., Singh, R.P. (eds) Wastewater Resource Recovery and Biological Methods. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-40198-5_2

Download citation

Publish with us

Policies and ethics

Navigation