Information-Theoretic Autonomous Source Search and Estimation of Mobile Sensors

  • Chapter
  • First Online:
Control of Autonomous Aerial Vehicles

Part of the book series: Advances in Industrial Control ((AIC))

  • 342 Accesses

Abstract

Estimation of a source term, including the origin and release rate, for reconstructing a hazardous chemical, biological, or radiological substance dispersion event in the atmosphere is very important for public safety. The increase in the potential danger of hazardous substances leakage accidents and the threat of malicious acts in random places makes the estimation of the source term difficult using traditional systems such as pre-installed ground sensors in specific areas or ground vehicles. Unmanned aerial vehicles (UAVs) can be considered as an alternative solution for estimating the source term because they can be deployed to any arbitrary place and rapidly cover relatively larger areas compared with ground-based systems. This chapter introduces autonomous source search and estimation strategies for UAVs. Bayesian inference-based estimation approaches that can accurately estimate the source term in turbulent and noisy environments are presented using domain knowledge such as the plume dispersion and sensor models. In particular, since the estimation problem is highly nonlinear and non-Gaussian, the sequential Monte Carlo method (i.e., particle filter) Besides, various information-theoretic decision-making strategies are introduced using different information measures to determine the most informative sampling point at each time step using different information measures. To use the interaction and information sharing among multiple agents at best, cooperation and sensor fusion strategies are also discussed. Finally, comprehensive numerical simulations and flight experiments are presented to validate and compare the performance of the proposed strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hutchinson M, Oh H, Chen W-H (2017) A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf Fus 36:130–148

    Article  Google Scholar 

  2. Singh SK, Rani R (2014) A least-squares inversion technique for identification of a point release: Application to fusion field trials 2007. Atmos Environ 92:104–117

    Article  Google Scholar 

  3. Sujit P, Ghose D (2004) Search using multiple UAVs with flight time constraints. IEEE Trans Aerosp Electron Syst 40(2):491–509

    Article  Google Scholar 

  4. Erdos D, Erdos A, Watkins SE (2013) An experimental uav system for search and rescue challenge. IEEE Aerosp Electron Syst Mag 28(5):32–37

    Article  Google Scholar 

  5. Esmailifar SM, Saghafi F (2015) Moving target localization by cooperation of multiple flying vehicles. IEEE Trans Aerosp Electron Syst 51(1):739–746

    Article  Google Scholar 

  6. Boström-Rost P, Axehill D, Hendeby G (2021) Sensor management for search and track using the poisson multi-bernoulli mixture filter. IEEE Trans Aerosp Electron Syst

    Google Scholar 

  7. Neumann PP, Asadi S, Lilienthal AJ, Bartholmai M, Schiller JH (2012) Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution map**. IEEE Robot Autom Mag 19(1):50–61

    Article  Google Scholar 

  8. Hutchinson M, Liu C, Chen W-H (2019) Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robot 36(4):797–817

    Article  Google Scholar 

  9. Hutchinson M, Ladosz P, Liu C, Chen W-H (2019) Experimental assessment of plume map** using point measurements from unmanned vehicles. In: 2019 international conference on robotics and autonomous

    Google Scholar 

  10. Gao W, Wang W, Zhu H, Huang G, Wu D, Du Z (2018) Robust radiation sources localization based on the peak suppressed particle filter for mixed multi-modal environments. Sensors 18(11):3784

    Article  Google Scholar 

  11. Voges N, Chaffiol A, Lucas P, Martinez D (2014) Reactive searching and Infotaxis in odor source localization. PLOS Comput Biol 10(10):1–13

    Article  Google Scholar 

  12. Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai M, Schiller JH (2013) Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv Robot 27(9):725–738

    Article  Google Scholar 

  13. Pyk P, i Badia SB, Bernardet U, Knüsel P, Carlsson M, Gu J, Chanie E, Hansson BS, Pearce TC, Verschure PF, (2006) An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonom Robot 20(3):197–213

    Google Scholar 

  14. Russell RA, Bab-Hadiashar A, Shepherd RL, Wallace GG (2003) A comparison of reactive robot chemotaxis algorithms. Robot Autonom Syst 45(2):83–97

    Article  Google Scholar 

  15. Bourne JR, Pardyjak ER, Leang KK (2019) Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots. IEEE Trans Robot 35(4):967–986

    Article  Google Scholar 

  16. Li J-G, Meng Q-H, Wang Y, Zeng M (2011) Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Autonom Robot 30(3):281–292

    Article  Google Scholar 

  17. Hoffmann GM, Tomlin CJ (2010) Mobile sensor network control using mutual information methods and particle filters. IEEE Trans Autom Control 55(1):32–47

    Article  MathSciNet  MATH  Google Scholar 

  18. Park M, An S, Seo J, Oh H (2021) Autonomous source search for uavs using gaussian mixture model-based infotaxis: Algorithm and flight experiments. IEEE Trans Aerosp Electron Syst 57(6):4238–4254

    Article  Google Scholar 

  19. Park M, Oh H (2020) Cooperative information-driven source search and estimation for multiple agents. Inf Fus 54:72–84

    Article  Google Scholar 

  20. Vergassola M, Villermaux E, Shraiman BI (2007) Infotaxis as a strategy for searching without gradients. Nature 445(7126):406

    Article  Google Scholar 

  21. Ristic B, Skvortsov A, Gunatilaka A (2016) A study of cognitive strategies for an autonomous search. Inf Fus 28:1–9

    Article  Google Scholar 

  22. Hutchinson M, Oh H, Chen W-H (2018) Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Inf Fus 42:179–189

    Article  Google Scholar 

  23. Lu Q, He Y, Wang J (2014) Localization of unknown odor source based on shannon’s entropy using multiple mobile robots. In: IECON 2014-40th annual conference of the IEEE industrial electronics society. IEEE, pp 2798–2803

    Google Scholar 

  24. Zhao Y, Chen B, Zhu Z, Chen F, Wang Y, Ji Y (2020) Searching the diffusive source in an unknown obstructed environment by cognitive strategies with forbidden areas. In: Building and environment, p 107349

    Google Scholar 

  25. Park M, Ladosz P, Kim J, Oh H (2022) Receding horizon-based infotaxis with random sampling for source search and estimation in complex environments. IEEE Trans Aerosp Electron Syst

    Google Scholar 

  26. An S, Park M, Oh H (2022) Receding-horizon rrt-infotaxis for autonomous source search in urban environments. Aerosp Sci Technol 120:107276

    Article  Google Scholar 

  27. Masson J, Bechet MB, Vergassola M (2009) Chasing information to search in random environments. J Phys A: Math Theoret 42(43):1–14

    Article  MathSciNet  MATH  Google Scholar 

  28. Ristic B, Gilliam C, Moran W, Palmer JL (2020) Decentralised multi-platform search for a hazardous source in a turbulent flow. Inf Fus 58:13–23

    Article  Google Scholar 

  29. Karpas ED, Shklarsh A, Schneidman E (2017) Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents. Proceed Nat Acad Sci 114(22):5589–5594

    Article  Google Scholar 

  30. Jang H, Park M, Oh H (2021) Improved socialtaxis for information-theoretic source search using cooperative multiple agents in turbulent environments. In: Asia-pacific international symposium

    Google Scholar 

  31. Wang Y, Huang H, Huang L, Ristic B (2017) Evaluation of Bayesian source estimation methods with prairie grass observations and gaussian plume model: A comparison of likelihood functions and distance measures. Atmos Environ 152:519–530

    Article  Google Scholar 

  32. Monroy J, Hernandez-Bennetts V, Fan H, Lilienthal A, Gonzalez-Jimenez J (2017) Gaden: A 3D gas dispersion simulator for mobile robot olfaction in realistic environments. Sensors 17(7):1479

    Article  Google Scholar 

  33. Senocak I, Hengartner NW, Short MB, Daniel WB (2008) Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference. Atmosp Environ 42(33):7718–7727

    Article  Google Scholar 

  34. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT press, Cambridge, MA

    MATH  Google Scholar 

  35. Efthimiou GC, Kovalets IV, Venetsanos A, Andronopoulos S, Argyropoulos CD, Kakosimos K (2017) An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment. Atmos Environ 170:118–129

    Article  Google Scholar 

  36. Jaynes ET (2003) Probability theory: The logic of science. Cambridge University Press, Cambridge, MA

    Book  MATH  Google Scholar 

  37. Yee E (2017) Automated computational inference engine for Bayesian source reconstruction: Application to some detections/non-detections made in the CTBT international monitoring system. Appl Math Sci 11(32):1581–1618

    Google Scholar 

  38. Hajieghrary H, Hsieh MA, Schwartz IB (2016) Multi-agent search for source localization in a turbulent medium. Phys Lett A 380(20):1698–1705

    Article  MathSciNet  Google Scholar 

  39. Samaniego FJ (2010) A comparison of the Bayesian and frequentist approaches to estimation, vol 24. Springer

    Google Scholar 

  40. Ristic B, Arulampalam S, Gordon N (2003) Beyond the Kalman filter: Particle filters for tracking applications. Artech house

    Google Scholar 

  41. Ristic B, Gunatilaka A, Wang Y (2017) Rao-blackwell dimension reduction applied to hazardous source parameter estimation. Sig Process 132:177–182

    Article  Google Scholar 

  42. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  MATH  Google Scholar 

  43. Cover TM, Thomas JA (2006) Elements of information theory. John Wiley & Sons, Hoboken, NJ

    MATH  Google Scholar 

  44. Beyme S (2014) Autonomous, wireless sensor network-assisted target search and map**. Ph.D. dissertation, University of British Columbia

    Google Scholar 

  45. Sebastiani P, Wynn HP (2000) Maximum entropy sampling and optimal Bayesian experimental design. J Roy Stat Soc: Ser B (Stat Methodol) 62(1):145–157

    Article  MathSciNet  MATH  Google Scholar 

  46. Marden JR, Arslan G, Shamma JS (2009) Joint strategy fictitious play with inertia for potential games. IEEE Trans Autom Control 54(2):208–220

    Article  MathSciNet  MATH  Google Scholar 

  47. Carruthers D, Edmunds H, Ellis K, McHugh C, Davies B, Thomson D (1995) The atmospheric dispersion modelling system (ADMS): Comparisons with data from the kincaid experiment. Int J Environ Pollut 5(4–6):382–400

    Google Scholar 

  48. Na J, Jeon K, Lee WB (2018) Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks. Chem Eng Sci 181:68–78

    Article  Google Scholar 

  49. Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmarking deep reinforcement learning for continuous control. In: International conference on machine learning. PMLR, pp 1329–1338

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03040570) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2023R1A2C2003130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyondong Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, M., An, S., Jang, H., Oh, H. (2024). Information-Theoretic Autonomous Source Search and Estimation of Mobile Sensors. In: L'Afflitto, A., Inalhan, G., Shin, HS. (eds) Control of Autonomous Aerial Vehicles. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-031-39767-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39767-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39766-0

  • Online ISBN: 978-3-031-39767-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation