Adapting Swarm Intelligence to a Fixed Wing Unmanned Combat Aerial Vehicle Platform

  • Chapter
  • First Online:
Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications

Part of the book series: Studies in Big Data ((SBD,volume 132))

  • 321 Accesses

Abstract

The majority of the swarm UAV studies focus on a single aspect, only investigating the stages such as formation development, path planning, or target tracking for a swarm currently in mission flight. Besides, the dynamic coordination and operation of the system based on the new commands that can be transmitted to the swarm during the mission are not taken into account; that is, the input of the ground resources is often ignored. In this study, all stages of a swarm of unmanned combat aerial vehicles (UCAV), from take-off to the end of the mission, are detailed in a single holistic framework, including communication with the ground station and intercommunication between swarm members. The designed solution is a platform that will enable the swarm structure to prevail by develo** alternative strategies and tactics against existing manned or unmanned air, land, and sea platforms. In this context, operational algorithms have been developed for fixed-wing, fully autonomous controlled UCAVs, which can successfully detect in-sight and beyond-sight targets for a desired period of time, and can communicate seamlessly with ground stations. Furthermore, dynamic swarm-type algorithms have been developed in order to fulfill the desired task in the event of the loss of any UCAV during the mission, to replace the lost vehicle with a new vehicle, and to communicate directly with the UCAVs in the swarm. As a result of adapting swarm intelligence to the UCAV platform, all individuals in the swarm perform tasks such as taking off in formation, adding or removing new individuals to the swarm, and formation protection. Moreover, they have the ability to change direction in a swarm, change formation, split or merge, navigate, ascend and descend, and simultaneous/sequential auto-landing as a swarm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Backbone:

First layer of the YOLO algorithm.

CNN:

Convolutional Neural Network.

CSPResNext50:

Backbone architecture.

CSPDarknet53:

Backbone architecture.

CSRT:

Channel and Spatial Reliability Tracking.

EfficientNet-B3:

Backbone architecture.

Faster R-CNN:

Faster Region-Based Convolutional Neural Network.

FOV:

Field of View.

FPS:

Frame Per Second.

Head:

Third layer of the YOLO algorithm.

ImageNet:

Detection algorithm training dataset.

IVG:

Impact Vector Guidance.

KCF:

Kernelized Correlation Filter.

LVFG:

Lyapunov Vector Field Guidance.

Neck:

Second layer of the YOLO algorithm.

YOLO:

You Only Look Once.

OpenCV:

An open-source library for programming functions.

SSD:

Single Shot Detector.

TCP:

Transmission Control Protocol.

TLD:

Tracking-Learning-Detection.

UDP:

User Datagram Protocol.

UGV:

Unmanned Ground Vehicle.

VTOL:

Vertical Take-Off and Landing.

altitude:

Flight altitude (feet).

arrowhead_array:

Instantaneous position of the UCAV in the arrowhead formation.

d1:

The distance between the UCAV with the arrowhead_array value of 1 (UCAV-1) and the guide UCAV (feet).

d1x:

Parameter to reflect the distance of the guide UCAV and UCAV-1 to other UCAVs in 2D space (feet).

d1y:

Parameter to reflect the distance of the guide UCAV and UCAV-1 to other UCAVs in 2D space (feet).

d2:

Distance between consecutive UCAVs (feet).

def.ucav_com[‘ucav_formation’][‘type’]:

Flight formation type.

def.ucav_com[‘guide_ucav'][‘gps_noise_flag’]:

GPS service availability.

direction (dir):

The value used to determine which wing a UCAV is on in the formation.

dispatch:

Departure command value.

prism_array:

Instantaneous position of the UCAV in the prism formation.

theta (θ):

Angle made by UCAVs other than UCAV-1 in a prism formation with the direction of flight of the guide UCAV (degrees).

ucav_com:

Data set containing ucav_id and ucav_link.

ucav_id:

Position of a UCAV in a formation.

ucav_link:

Instant location and speed information of all UCAVs within the communication range of a default UCAV.

x:

X-coordinate of the guide UCAV (longitude).

x_vel:

X-component of the speed of guide UCAV (knots).

y:

Y-coordinate of the guide UCAV (latitude).

y_vel:

Y-component of the speed of guide UCAV (knots).

References

  1. Bolourian, N., Hammad, A.: LiDAR equipped UAV path planning considering potential locations of defects for bridge inspection. Automat. Constr. 117, 1–16 (2020). https://doi.org/10.1016/j.autcon.2020.103250

    Article  Google Scholar 

  2. Varbla, S., Puust, R., Ellmann, A.: Accuracy assessment of RTK-GNSS equipped UAV conducted as-built surveys for construction site modeling. Surv. Rev. 53(381), 477–492 (2020). https://doi.org/10.1080/00396265.2020.1830544

    Article  Google Scholar 

  3. Adamski, M.: Effectiveness analysis of UCAV used in modern military conflicts. Aviation 24(2), 66–71 (2020). https://doi.org/10.3846/aviation.2020.12144

    Article  Google Scholar 

  4. Li, W., Shi, J., Wu, Y., Wang, Y., Lyu, Y.: A multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat. Def. Tech. 18(6), 1006–1022 (2022). https://doi.org/10.1016/j.dt.2021.04.009

    Article  Google Scholar 

  5. Wang, X., Zhao, H., Han, T., Wei, Z., Liang, Y., Li, Y.: A Gaussian estimation of distribution algorithm with random walk strategies and its application in optimal missile guidance handover for multi-UCAV in over-the-horizon air combat. IEEE Access 7, 43298–43317 (2019). https://doi.org/10.1109/ACCESS.2019.2908262

    Article  Google Scholar 

  6. Ju, C., Son, H.: Multiple UAV systems for agricultural applications: control, ımplementation and evaluation. Electronics 7(9), 1–19 (2018). https://doi.org/10.3390/electronics7090162

    Article  Google Scholar 

  7. Eaton, C.M., Chong, E.K.P., Maciejewski, A.A.: Multiple-scenario unmanned aerial system control: a systems engineering approach and review of existing control methods. Aerospace 3(1), 1–26 (2016). https://doi.org/10.3390/aerospace3010001

    Article  Google Scholar 

  8. Zhu, H., Wang, Y., Ma, Z., Li, X.: A comparative study of swarm intelligence algorithms for UCAV path-planning problems. Mathematics 9(2), 1–31 (2021). https://doi.org/10.3390/math9020171

    Article  Google Scholar 

  9. Weia, Y., Blake, M.B., Madey, G.R.: An operation-time simulation framework for UAV swarm configuration and mission planning. Procedia Comp. Sci. 18, 1949–1958 (2013). https://doi.org/10.1016/j.procs.2013.05.364

    Article  Google Scholar 

  10. Yang, Z., Sun, Z., Piao, H., Zhao, Y., Zhou, D., Kong, W., Zhang, K.: An autonomous attack guidance method with high aiming precision for UCAV based on adaptive fuzzy control under model predictive control framework. Appl. Sci. 10(16), 1–21 (2020). https://doi.org/10.3390/app10165677

    Article  Google Scholar 

  11. Tan, M., Tang, A., Ding, D., **e, L., Huang, C.: Autonomous air combat maneuvering decision method of UCAV based on LSHADE-TSO-MPC under enemy trajectory prediction. Electronics 11(20), 1–25 (2022). https://doi.org/10.3390/electronics11203383

    Article  Google Scholar 

  12. Ruan, W., Duan, H., Deng, Y.: Autonomous maneuver decisions transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements. IEEE/CAA J. Automat. Sinica 9(9), 1639–1657 (2022). https://doi.org/10.1109/JAS.2022.105803

    Article  Google Scholar 

  13. Yue, L., **. Electronics 11(16), 1–19 (2022). https://doi.org/10.3390/electronics11162602

    Article  Google Scholar 

  14. Liu, X., Yin, Y., Su, Y., Ming, R.: A multi-UCAV cooperative decision making method based on an MAPPO algorithm for beyond-visual range air combat. Aerospace 9(19), 1–19 (2022). https://doi.org/10.3390/aerospace9100563

    Article  Google Scholar 

  15. Agarwala, S., Pape, L.E., Dagli, C.H.: A hybrid genetic algorithm and particle swarm optimization with type-2 fuzzy sets for generating systems of systems architectures. Procedia Comp. Sci. 36, 57–64 (2014). https://doi.org/10.1016/j.procs.2014.09.037

    Article  Google Scholar 

  16. Huang, H., Zhuo, T.: Multi-model cooperative task assignment and path planning of multiple UCAV formation. Multimed. Tools Appl. 78, 415–436 (2019). https://doi.org/10.1007/s11042-017-4956-7

    Article  Google Scholar 

  17. Phung, M.D., Ha, Q.P.: Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comp. 107, 1–15 (2021). https://doi.org/10.1016/j.asoc.2021.107376

    Article  Google Scholar 

  18. Rivera, G., Porras, R., Sanchez-Solis, J.P., Florencia, R., García, V.: Outranking-based multi-objective PSO for scheduling unrelated parallel machines with a freight industry-oriented application. Eng. Appl. Artif. Intell. 108, 104556 (2022). https://doi.org/10.1016/j.engappai.2021.104556

    Article  Google Scholar 

  19. Olmos, J., Florencia, R., García, V., González, M.V., Rivera, G., Sánchez-Solís, P.: Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms. Technological and Industrial Applications Associated With Industry 4, 177–194 (2022). https://doi.org/10.1007/978-3-030-68663-5_13

    Article  Google Scholar 

  20. Castellanos, A., Cruz-Reyes, L., Fernández, E., Rivera, G., Gomez-Santillan, C., Rangel-Valdez, N.: Hybridisation of Swarm Intelligence Algorithms with Multi-Criteria Ordinal Classification: A Strategy to Address Many-Objective Optimisation. Mathematics 10(3), 322 (2022). https://doi.org/10.3390/math10030322

    Article  Google Scholar 

  21. Rivera, G., Florencia, R., Guerrero, M., Porras, R., Sánchez-Solís, J.P.: Online multi-criteria portfolio analysis through compromise programming models built on the underlying principles of fuzzy outranking. Inf. Sci. 580, 734–755 (2021). https://doi.org/10.1016/j.ins.2021.08.087

    Article  MathSciNet  Google Scholar 

  22. Qin, B., Zhang, D., Tang, S., Wang, M.: Distributed grou** cooperative dynamic task assignment method of UAV swarm. Appl. Sci. 12(6), 1–27 (2022). https://doi.org/10.3390/app12062865

    Article  Google Scholar 

  23. Zhen, Z., Wen, L., Wang, B., Hu, Z., Zhang, D.: Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm. Aerosp. Sci. Technol. 119, 1–8 (2021). https://doi.org/10.1016/j.ast.2021.107054

    Article  Google Scholar 

  24. Dui, H., Zhang, C., Bai, G., Chen, L.: Mission reliability modeling of UAV swarm and its structure optimization based on importance measure. Reliab. Eng. Syst. Safe 215, 1–12 (2021). https://doi.org/10.1016/j.ress.2021.107879

    Article  Google Scholar 

  25. Hildmann, H., Kovacs, E.: Review: using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3(3), 1–26 (2019). https://doi.org/10.3390/drones3030059

    Article  Google Scholar 

  26. Mohsan, S.A.H., Khan, M.A., Noor, F., Ullah, I., Alsharif, M.H.: Towards the unmanned aerial vehicles (UAVs): a comprehensive review. Drones 6(6), 1–27 (2022). https://doi.org/10.3390/drones6060147

    Article  Google Scholar 

  27. Hong, L., Guo, H., Liu, J., Zhang, Y.: Toward swarm coordination: topology-aware inter-UAV routing optimization. IEEE T. Veh. Technol. 69(9), 10177–10187 (2020). https://doi.org/10.1109/TVT.2020.3003356

    Article  Google Scholar 

  28. Zhou, W., Ll, J., Liu, Z., Shen, L.: Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning. Chinese J. Aeronaut. 35(7), 100–112 (2022). https://doi.org/10.1016/j.cja.2021.09.008

    Article  Google Scholar 

  29. Wang, J., Ding, D., Han, B., Li, C., Ku, S.: Fast calculation method of UCAV maneuver flight control based on RBF network. J. Phys.: Conf. Ser. 1087(2), 1–8 (2018). https://doi.org/10.1088/1742-6596/1087/2/022027

  30. Peng, Q., Wu, H., Xue, R.: Review of dynamic task allocation methods for UAV swarms oriented to ground targets. Com. Syst. Model. Sim. 1(3), 163–175 (2021). https://doi.org/10.23919/CSMS.2021.0022

  31. **ng, D., Zhen, Z., Gong, H.: Offense-defense confrontation decision making for dynamic UAV swarm versus UAV swarm. Proceed. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 233(15), 5689–5702 (2019). https://doi.org/10.1177/0954410019853982

  32. Jia, Y., Qu, L., Li, X.: A double layer coding model with a rotation-based particle swarm algorithm for unmanned combar aerial vehicle path planning. Eng. Appl. Artif. Intel. 116, 1–22 (2022). https://doi.org/10.1016/j.engappai.2022.105410

    Article  Google Scholar 

  33. Chen, X., Tang, J., Lao, S.: Review of unmanned aerial vehicle swarm communication architectures and routing protocols. Appl. Sci. 10(3661), 1–23 (2020). https://doi.org/10.3390/app10103661

    Article  Google Scholar 

  34. Zhu, H., Wang, Y., Li, X.: UCAV path planning for avoiding obstacles using cooperative co-evolution spider monkey optimization. Knowledge-Based Syst. 246, 1–19 (2022). https://doi.org/10.1016/j.knosys.2022.108713

    Article  Google Scholar 

  35. Chen, J., Cheng, S., Chen, Y., **e, Y., Shi, Y.: Enhanced brain storm optimization algorithm for wireless sensor networks deployment. Adv. Swarm Comp. Intel. (Springer LNCS) 9140, 373–381 (2015). https://doi.org/10.1007/978-3-319-20466-6_40

    Article  Google Scholar 

  36. Li, Y., Han, T., Zhao, H., Gao, H.: An adaptive whale optimization algorithm using Gaussian distribution strategies and its application in heterogeneous UCAVs task allocation. IEEE Access 7, 110138–110158 (2019). https://doi.org/10.1109/ACCESS.2019.2933661

    Article  Google Scholar 

  37. Zhou, Y., Rao, B., Wang, W.: UAV swarm intelligence: recent advances and future trends. IEEE Access 8, 183856–183878 (2020). https://doi.org/10.1109/ACCESS.2020.3028865

    Article  Google Scholar 

  38. Shao, Z., Yan, F., Zhou, Z., Zhu, X.: Path planning for multi-UAV formation rendezvous based on distributed cooperative particle swarm optimization. Appl. Sci. 9(2), 1–16 (2019). https://doi.org/10.3390/app9132621

    Article  Google Scholar 

  39. Madridano, A., Al-Kaff, A., Martin, D., Escalera, A.: 3D trajectory planning method for UAVs swarm in building emergencies. Sensors 20(3), 1–20 (2019). https://doi.org/10.3390/s20030642

    Article  Google Scholar 

  40. Ling, H., Luo, H., Chen, H., Bai, L., Zhu, T., Wang, Y.: Modelling and simulation of distributed UAV swarm cooperative planning and perception. Int. J. Aerosp. Eng. 2021(9977262), 1–11 (2021). https://doi.org/10.1155/2021/9977262

    Article  Google Scholar 

  41. Zhen, X., Enze, Z., Qingwei, C.: Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization. J. Syst. Eng. Elect. 31, 130–141 (2020). https://doi.org/10.21629/JSEE.2020.01.14

  42. Liu, Y., Wang, Q., Zhuang, Y., Hu, H.: A novel trail detection and scene understanding framework for a quadcopter with monocular vision. IEEE Sensors J. 17(20), 6778–6787 (2017). https://doi.org/10.1109/JSEN.2017.2746184

    Article  Google Scholar 

  43. Suo, W., Wang, M., Zhang, D., Qu, Z., Yu, L.: Formation control technology of fixed-wing UAV swarm based on distributed ad hoc network. Appl. Sci. 12(535), 1–23 (2022). https://doi.org/10.3390/app12020535

    Article  Google Scholar 

  44. Azam, M.A., Mittelmann, H.D., Ragi, S.: UAV formation shape control via decentralized Markov decision process. Algorithms 14(91), 1–12 (2021). https://doi.org/10.3390/a14030091

    Article  Google Scholar 

  45. Fu, X., Pan, J., Wang, H., Gao, X.: A formation maintenance and reconstruction method of UAV swarm based on distributed control. Aerosp. Sci. Tech. 104, 1–10 (2020). https://doi.org/10.1016/j.ast.2020.105981

    Article  Google Scholar 

  46. Fabra, F., Zamora, W., Masanet, J., Calafate, C.T., Cano, J.C., Manzoni, P.: Automatic system supporting multicopter swarms with manual guidance. Comp. Electr. Eng. 74, 413–428 (2019). https://doi.org/10.1016/j.compeleceng.2019.01.026

    Article  Google Scholar 

  47. Li, S., Fang, X.: A modified adaptive formation of UAV swarm by pigeon flock behavior within local visual field. Aerosp. Sci. Tech. 114, 1–15 (2021). https://doi.org/10.1016/j.ast.2021.106736

    Article  Google Scholar 

  48. Brust, M.R., Danoy, G., Stolfi, D.H., Bouvry, P.: Swarm-based counter UAV defense system. Discover Intern. Things 1(2), 1–19 (2021). https://doi.org/10.1007/s43926-021-00002-x

    Article  Google Scholar 

  49. Xu, C., Zhang, K., Jiang, Y., Niu, S., Yang, T., Song, H.: Communication aware UAV swarm surveillance based on hierarchical architecture. Drones 5(33), 1–26 (2021). https://doi.org/10.3390/drones5020033

    Article  Google Scholar 

  50. Zhang, X., Ali, M.: A bean optimization-based cooperation method for target searching by swarm UAVs in unknown environments. IEEE Access 8, 43850–43862 (2020). https://doi.org/10.1109/ACCESS.2020.2977499

    Article  Google Scholar 

  51. Sanchez-Lopez, J.L., Pestana, J., Paloma, D.L.P.: A reliable open-source system architecture for the fast designing and prototy** of autonomous multi-UAV systems: simulation and experimentation. J. Intel. Robo. Syst. 84(1–4), 1–19 (2016). https://doi.org/10.1007/s10846-015-0288-x

    Article  Google Scholar 

  52. Puente-Castro, A., Rivero, D., Pazos, A., Fernandez-Blanco, E.: A review of artificial intelligence applied to path planning in UAV swarms. Neural Comp. Appl. 34, 153–170 (2022). https://doi.org/10.1007/s00521-021-06569-4

    Article  Google Scholar 

  53. Tekin, R., Erer, K.S., Holzapfel, F.: Control of impact time with increased robustness via feedback linearization. J. Guid. Cont. Dynam. 39(7), 1682–1689 (2016). https://doi.org/10.2514/1.G001719

    Article  Google Scholar 

  54. Saleem, A., Ratnoo, A.: Lyapunov-based guidance law for impact time control and simultaneous arrival. J. Guid. Cont. Dynam. 39(1), 164–173 (2016). https://doi.org/10.2514/1.G001349

    Article  Google Scholar 

  55. Cho, D., Kim, H.J., Tahk, M.J.: Nonsingular sliding mode guidance for impact time control. J. Guid. Cont. Dynam. 39(1), 61–68 (2016). https://doi.org/10.2514/1.G001167

    Article  Google Scholar 

  56. Kim, H., Lee, J., Kim, H.J., Kwon, H., Park, J.: Look-angle-sha** guidance law for impact angle and time control with field-of-view constraint. IEEE Trans. Aerosp. Electro. Syst. 56(2), 1602–1612 (2019). https://doi.org/10.1109/TAES.2019.2924175

    Article  Google Scholar 

  57. Tekin, R., Erer, K.S., Holzapfel, F.: Polynomial sha** of the look angle for impact time control. J. Guid. Cont. Dynam. 40(10), 266–273 (2017). https://doi.org/10.2514/1.G002751

    Article  Google Scholar 

  58. Tekin, R., Erer, K.S.: Switched-gain guidance for impact angle control under physical constraints. J. Guid. Cont. Dynam. 38(2), 205–216 (2015). https://doi.org/10.2514/1.G000766

    Article  Google Scholar 

  59. Ohlmeyer, E.J., Phillips, C.A.: Generalized vector explicit guidance. J. Guid. Cont. Dynam. 29(2), 261–268 (2006). https://doi.org/10.2514/1.14956

    Article  Google Scholar 

  60. Yao, Z., Yongzhi, S., **angdong, L.: Sliding mode control based guidance law with impact angle. Chinese J. Aeronaut. 27(1), 145–152 (2014). https://doi.org/10.1016/j.cja.2013.12.011

    Article  Google Scholar 

  61. Erer, K.S., Tekin, R.: Impact vector guidance. J. Guid. Cont. Dynam. 44(10), 1892–1899 (2021). https://doi.org/10.2514/1.G006087

    Article  Google Scholar 

  62. Roy, A.M., Bose, R., Bhaduri, J.: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Comp. Appl. 34, 3895–3921 (2022). https://doi.org/10.1007/s00521-021-06651-x

    Article  Google Scholar 

  63. **ao, Y., Wang, X., Zhang, P., Meng, F., Shao, F.: Object detection based on faster R-CNN algorithm with skip pooling and fusion of contextual information. Sensors 20(19), 1–20 (2020). https://doi.org/10.3390/s20195490

    Article  Google Scholar 

  64. Zhai, S., Shang, D., Wang, S., Dong, S.: DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access 8, 24344–24357 (2020). https://doi.org/10.1109/ACCESS.2020.2971026

    Article  Google Scholar 

  65. Li, J., Liu, C., Lu, X., Wu, B.: CME-YOLOv5: an efficient object detection network for densely spaced fish and small targets. Water 14(2412), 1–12 (2022). https://doi.org/10.3390/w14152412

    Article  Google Scholar 

  66. Wang, Z., Wu, L., Li, T., Shi, P.: A smoke detection based on improved YOLOv5. Mathematics 10(1190), 1–13 (2022). https://doi.org/10.3390/math10071190

    Article  Google Scholar 

  67. Yang, X., Zhu, S., **a, S., Zhou, D.: A new TLD target tracking method based on improved correlation filter and adaptive scale. The Visual Comp. 36, 1783–1795 (2020). https://doi.org/10.1007/s00371-019-01772-w

    Article  Google Scholar 

  68. Cazzato, D., Leo, M., Distante, C., Voos, H.: When i look into your eyes: a survey on computer vision contributions for human gaze estimation and tracking. Sensors 20(13), 1–42 (2020). https://doi.org/10.3390/s20133739

    Article  Google Scholar 

  69. Zhao, F., Hui, K., Wang, T., Zhang, Z., Chen, Y.: A KCF-based incremental target tracking method with constant update speed. IEEE Access 9, 73544–73560 (2021). https://doi.org/10.1109/ACCESS.2021.3080308

    Article  Google Scholar 

  70. **e, J., Stensrud, E., Skramstad, T.: Detection-based object tracking applied to remote ship inspection. Sensors 21(3), 1–23 (2021). https://doi.org/10.3390/s21030761

    Article  Google Scholar 

  71. Kim, M., Kim, Y.: Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint. Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013). https://doi.org/10.5139/IJASS.2013.14.1.67

    Article  Google Scholar 

  72. Park, S.: Circling over a target with relative side bearing. J. Guid. Cont. Dynam. 39(6), 1450–1456 (2016). https://doi.org/10.2514/1.G001421

    Article  Google Scholar 

  73. Park, S., Deyst, J., How, J.P.: Performance and Lyapunov stability of a nonlinear path following guidance method. J. Guid. Cont. Dynam. 30(6), 1718–1728 (2007). https://doi.org/10.2514/1.28957

    Article  Google Scholar 

  74. Sun, S., Wang, H., Liu, J., He, Y.: Fast Lyapunov vector field guidance for standoff target tracking based on offline search. IEEE Access 7, 124797–124808 (2019). https://doi.org/10.1109/ACCESS.2019.2932998

    Article  Google Scholar 

  75. Pothen, A.A., Ratnoo, A.: Curvature-constrained Lyapunov vector field for standoff target tracking. J. Guid. Cont. Dynam. 40(10), 2725–2732 (2017). https://doi.org/10.2514/1.G002281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bakirci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakirci, M., Ozer, M.M. (2023). Adapting Swarm Intelligence to a Fixed Wing Unmanned Combat Aerial Vehicle Platform. In: Rivera, G., Cruz-Reyes, L., Dorronsoro, B., Rosete, A. (eds) Data Analytics and Computational Intelligence: Novel Models, Algorithms and Applications. Studies in Big Data, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-031-38325-0_18

Download citation

Publish with us

Policies and ethics

Navigation