Artificial Intelligence in Obstetrics

  • Chapter
  • First Online:
Advances in Smart Healthcare Paradigms and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 244))

  • 121 Accesses

Abstract

The aim of this chapter is to present theoretical and practical aspects of how Artificial Intelligence can be applied in the obstetrics field. We are discussing matters such as the poignant role that artificial intelligence plays in fetal morphology scans, how artificial intelligence help healthcare providers determine the type of birth should be used (vaginal vs. cesarean), and last but not least how can we monitor the training programs success in teaching doctors and midwifes in determining the fetal head position and weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

CNN:

Convolutional Neural Networks

DE:

Differential Evolution

DL:

Deep Learning

EC:

Evolutionary Computation

EU:

European Union

FB:

Fetal Brain

FP:

Fetal Plane

NN:

Neural Networks

ReLU:

Rectified Linear Unit

References

  1. Boyle, B., et al.: Estimating global burden of disease due to congenital anomaly: an analysis of European data. Arch. Disease Childhood Fetal Neonatal Edition, 103, 22–28, (2018).

    Google Scholar 

  2. https://data.unicef.org/country/rou

  3. Kinsner-Ovaskainen, A., et al.: European monitoring of congenital anomalies: JRC EUROCAT, report on statistical monitoring of congenital anomalies (2008–2017) EUR 30158 EN, Publication Office of the European Union. Luxembourg (2020). https://doi.org/10.2760.65886

    Google Scholar 

  4. Lobo, I., Zhaurova, K.: Birth defects: causes and statistics. Nat. Educ. 1(1), 18 (2008)

    Google Scholar 

  5. Tegnander, E., Eik-Nes, S.H.: The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defect at the second trimester fetal examination. Ultrasound Obstet Gyncol. 28, 8–14 (2006)

    Article  Google Scholar 

  6. Bensamlali, M., et al.: Discordances between pre-natal and postanatl diagnosis of congenital heart diseases and impact on care strategies. J. Am. Coll. Cardiol. 68, 921–930 (2016)

    Article  Google Scholar 

  7. Paladini, D.: Sonography in obese and overweight pregnant women: clinical, medicolegal and technical issues. Ultrasound Obstet Gynecl. 33(6), 720–729 (2009)

    Article  Google Scholar 

  8. Boss, J.: The antiquity of caesarean section with maternal survival: the jewish tradition. Med. Hist. 5, 17–31 (1961)

    Article  Google Scholar 

  9. Storn, R., Price, K.: Differential-evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Storn, R., Price, K.: Differential evolution for multi-objective optimization. Evol. Comput. 4, 8–12 (2003)

    Google Scholar 

  11. Omran, M.G.H., Englebrecht, A.P. Selt-adaptive differential evolution methods for unsupervised image classification. In: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6 (2006)

    Google Scholar 

  12. Aslantas, V., Tunckanat, M.: Differential evolution algorithm for segmentation of wounded images. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing, WISP (2007)

    Google Scholar 

  13. Yang, S., Gan, Y.B., Qing, A.: Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Trans. Antenn. Propag. Lett. 1(1), 173–175 (2002)

    Article  Google Scholar 

  14. Dhahri, H., Alimi, A.M.: The modified differential evolution and the RBF (MDE-RBF) neural network for time series prediction. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2938–2943 (2006)

    Google Scholar 

  15. Kim, H.K., Chong, J.K., Park, K.Y., Lowther, D.A.: Differential evolution strategy for constrained global optimization and application to practical engineering problems. IEEE Trans. Magn. 43(4), 1565–1568 (2007)

    Article  Google Scholar 

  16. Massa, A., Pastorino, M., Randazzo, A.: Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution methods. IEEEE Trans. Antenn. Propag. Lett. 5(1), 155–158 (2006)

    Google Scholar 

  17. Su, C.T., Lee, C.S.: Network reconfiguration of distribution systems using improved mixed integer hybrid differential evolution. IEEE Trans. Power Deliv. 18(3), 1022–1027 (2003)

    Article  Google Scholar 

  18. Tasgetiren, M.F., Suganthan, P.N., Chua, T.J., Al-Hajri, A.: Differential evolution algorithms for the generalized assignment problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’09), pp. 2606–2613 (2009)

    Google Scholar 

  19. Sum-Im, T., Taylor, M.R., et al.: A differential evolution algorithm for multistage transmission planning. In: Proceedings of the 42nd International Universities Power Engineering Conference (UPEC’07), pp. 357–364 (2007)

    Google Scholar 

  20. Belciug, S.: Learning deep neural networks’ architectures using differential evolution. Case study: medical imaging processing. Comput. Biol. Med. 105623 (2022). https://doi.org/10.1016/j.compbiomed.2022.105623

  21. Belciug, S.: Artificial Intelligence in Cancer—Diagnostic to Tailored Treatment. Elsevier (2020)

    Google Scholar 

  22. Belciug, S., Iliescu, D.G.: Pregnancy with Artificial Intelligence. A 9,5 Months Journey from Preconception to Birth. Springer Nature (2023). https://doi.org/10.1007/978-3-031-18154-2

  23. Ivanescu, R., Belciug, S., Nascu, A., Serbanescu, M.S., Iliescu, D.G.: Evolutionary computation paradigm to determine deep neural networks architecture. Int. J. Comput. Commun. Control 17(5), 4866 (2022)

    Article  Google Scholar 

  24. Iliescu, D.G., Belciug, S., Ivanescu, R.C., Dragusin, Cara, M.L., Dira, L.: Prediction of labor outcome pilot study: evaluation of primiparous women at term. Am. J. Obstet. Gynecol. MFM 4(6), 100711 (2022)

    Google Scholar 

  25. Sherer, D.M., Miodovnik, M., Bradley, K.S., Langer, O.: Intrapartum fetal head position I: comparison between transvaginal digital examination and transabdominal ultrasound assessment during the active stage of labor. Ultrasound Obstet. Gynecol. 19, 258–263 (2002)

    Article  Google Scholar 

  26. Akmal, S., Kametas, N., Tsoi, E., Hargreaves, C., Nicolaides, K.H.: Comparison of transvaginal digital examination with intrapartum sonography to determine fetal head position before instrumental delivery. Ultrasound Obstet. Gynecol. 21, 437–440 (2003)

    Article  Google Scholar 

  27. Chou, M.R., Kreiser, D., Taslimi, M., Druzin, M.L., El-Sayed, Y.Y.: Vaginal versus ultrasound examination of fetal occiput position during the second stage of labor. Am. J. Obstet. Gynecol. 191, 521–524 (2004)

    Article  Google Scholar 

  28. Dupuis, O., Ruimark, S., Corinne, D., Simone, T., Andre, D., Rene-Charles, R.: Fetal head position during the second stage of labor: comparison of digital vaginal examination and transabdominal ultrasonographic examination. Eur. J. Obstet. Gynecol. Reprod. Biol. 123, 193–197 (2005)

    Article  Google Scholar 

  29. Zahalka, N., Sadan, O., Malinger, G., Liberati, M., Boaz, M., Glezerman, M., Rotmensch, S.: Comparison of transvaginal sonography with digital examination and transabdominal sonography for determination of fetal head position in the second stage of labor. Am. J. Obstet. Gynecol. 193, 381–386 (2005)

    Article  Google Scholar 

  30. Iliescu, D.G., Belciug, S., Gheonea, I.: Practical guide to simulation in delivery room emergencies. In: Cinnella, G., Beck, R., Malvasi, A., (eds.). Springer (2023), in press

    Google Scholar 

  31. Rozenberg, P., Porcher, R., Slomon, L.J., Boirot, F., Morin, C., Ville, Y.: Comparison of the learning curves of digital examination and transabdominal sonography for the determination of fetal head position during labor. Ultrasound Obstet. Gynecol. 31, 332–337 (2008)

    Article  Google Scholar 

  32. Predanic, M., Cho, A., Ingrid, F., Pellettieri, J.: Ultrasonographic estimation of fetal weight: acquiring accuracy in residency. J. Ultrasound Med. 21(5), 495–500 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ministry of Research Innovation and Digitization, CNCS—UEFISCDI, project number PN-III-P4-PCE-2021-0057, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smaranda Belciug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belciug, S., Iliescu, D.G. (2023). Artificial Intelligence in Obstetrics. In: Kwaśnicka, H., Jain, N., Markowska-Kaczmar, U., Lim, C.P., Jain, L.C. (eds) Advances in Smart Healthcare Paradigms and Applications. Intelligent Systems Reference Library, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-37306-0_7

Download citation

Publish with us

Policies and ethics

Navigation