Differential Diagnosis of Gait and Balance Impairment in Idiopathic Normal Pressure Hydrocephalus

  • Chapter
  • First Online:
Normal Pressure Hydrocephalus

Abstract

Difficulties with gait and balance are a key component of normal pressure hydrocephalus (NPH) pathology. They contribute to the symptomatic triad of NPH together with cognitive and urinary impairment. However, not all of these symptoms are always present in each patient. Although the pathophysiology of NPH gait and balance impairment has not yet been fully elucidated, a multilevel cortical and subcortical dysfunction including midbrain compression and atrophy likely plays a role. Impairment of all modalities of postural stability corresponds to the typical manifestation of frontal gait pathology which involves short steps, widened base of support, and reduced foot-floor clearance as well as other signs described in this chapter. Sixty to eighty per cent of NPH patients are at risk of falls. Other gait phenotypes might be present in NPH patients due to various neurological and non-neurological comorbidities. Early diagnosis and treatment of NPH using ventriculoperitoneal shunting usually lead to significant improvement in gait and balance. Thus, this chapter elaborates on the neurological differential diagnostics of NPH with specific focus on gait impairment.

Ota Gál, Martina Hoskovcová, Jiří Klempíř contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BOS:

Base of support

CBD:

Corticobasal degeneration

CBS:

Corticobasal syndrome

CoP:

Centre of pressure

DLB:

Dementia with Lewy bodies

FGA:

Functional gait assessment

FOG:

Freezing of gait

Inph:

Idiopathic normal pressure hydrocephalus

MSA:

Multiple system atrophy

NPH:

Normal pressure hydrocephalus

PD:

Parkinson’s disease

PSP:

Progressive supranuclear palsy

PSP-RS:

PSP-Richardson’s syndrome

sNPH:

Secondary normal pressure hydrocephalus

VP:

Vascular Parkinsonism

References

  1. Mori K. Management of idiopathic normal-pressure hydrocephalus: a multi-institutional study conducted in Japan. J Neurosurg. 2001;95:970–3.

    Article  CAS  PubMed  Google Scholar 

  2. Morel E, Armand S, Assal F, Allali G. Is frontal gait a myth in normal pressure hydrocephalus? J Neurol Sci. 2019;15(402):175–9.

    Article  Google Scholar 

  3. Morel E, Armand S, Assal F, Allali G. Normal pressure hydrocephalus and CSF tap test response: the gait phenotype matters. J Neural Transm (Vienna). 2021;128(1):121–5.

    Article  PubMed  Google Scholar 

  4. Lee PH, Yong SW, Ahn YH, Huh K. Correlation of midbrain diameter and gait disturbance in patients with idiopathic normal pressure hydrocephalus. J Neurol. 2005;252:958–63.

    Article  PubMed  Google Scholar 

  5. Ouchi Y, Nakayama T, Kanno T, et al. In vivo presynaptic and postsynaptic striatal dopamine functions in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab. 2007;27:803–10.

    Article  CAS  PubMed  Google Scholar 

  6. Mocco J, Tomey MI, Komotar R, et al. Ventriculoperitoneal shunting of idiopathic normal pressure hydrocephalus increases midbrain size: a potential mechanism for gait improvement. Neurosurgery. 2006;59(4):B47–9.

    Article  Google Scholar 

  7. Akiguchi I, Ishii M, Watanabe Y, et al. Shunt-responsive parkinsonism and reversible white matter lesions in patients with idiopathic NPH. J Neurol. 2008;255:1392–9.

    Article  PubMed  Google Scholar 

  8. Tullberg M, Jensen C, Ekholm S, Wikkelsø C. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. Am J Neuroradiol. 2001;22:1665–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hiraoka K, Yamasaki H, Takagi M, et al. Is the midbrain involved in the manifestation of gait disturbance in idiopathic normal-pressure hydrocephalus? J Neurol. 2011;258:820–5.

    Article  PubMed  Google Scholar 

  10. Armand S, Allet L, Landis T, et al. Interest of dualtask-related gait changes in idiopathic normal pressure hydrocephalus. Eur J Neurol. 2011;18:1081–4.

    Article  CAS  PubMed  Google Scholar 

  11. Aoki Y, Kazui H, Pascual-Marqui RD, Ishii R, Yoshiyama K, Kanemoto H, Suzuki Y, Sato S, Azuma S, Suehiro T, Matsumoto T, Hata M, Canuet L, Iwase M, Ikeda M. EEG resting-state networks responsible for gait disturbance features in idiopathic normal pressure hydrocephalus. Clin EEG Neurosci. 2019;50(3):210–8.

    Article  PubMed  Google Scholar 

  12. Chistyakov AV, Hafner H, Sinai A, et al. Motor cortex disinhibition in normal-pressure-hydrocephalus. J Neurosurg. 2012;116:453–9.

    Article  PubMed  Google Scholar 

  13. Dumarey NE, Massager N, Laureys S, et al. Voxel-based assessment of spinal tap test-induced regional cerebral blood l ow changes in normal pressure hydrocephalus. Nucl Med Commun. 2005;26:757–63.

    Article  PubMed  Google Scholar 

  14. Sasaki H, Ishii K, Kono AK, et al. Cerebral perfusion pattern of idiopathic normal pressure hydrocephalus studied by SPECT and statistical brain map**. Ann Nucl Med. 2007;21:39–45.

    Article  PubMed  Google Scholar 

  15. Momjian S, Owler BK, Czosnyka Z, et al. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127:965–72.

    Article  PubMed  Google Scholar 

  16. Ishii K, Hashimoto M, Hayashida K, et al. A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement Geriatr Cogn Disord. 2011;32:1–10.

    Article  PubMed  Google Scholar 

  17. Kobayashi S, Tateno M, Utsumi K, Takahashi A, Morii H, Saito T. Two-layer appearance on brain perfusion SPECT in idiopathic normal pressure hydrocephalus: a qualitative analysis by using easy Z-score imaging system, eZIS. Dement Geriatr Cogn Disord. 2009;28:330–7.

    Article  PubMed  Google Scholar 

  18. Yogev-Seligmann G, Hausdorf JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329–42.

    Article  PubMed  Google Scholar 

  19. Allali G, Assal F, Kressig R, et al. Impact of impaired executive function on gait stability. Dement Geriatr Cogn Disord. 2008;26:364–9.

    Article  PubMed  Google Scholar 

  20. Nakayama T, Ouchi Y, Yoshikawa E, et al. Striatal D2 receptor availability after shunting in idiopathic normal pressure hydrocephalus. J Nucl Med. 2007;48:1981–6.

    Article  CAS  PubMed  Google Scholar 

  21. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kehler U. Clinical characteristics and differential diagnosis. In: Fritsch MJ, Kehler U, Meier U, editors. Normal pressure hydrocephalus. Stuttgart/New York/Delhi/Rio: Thieme; 2014.

    Google Scholar 

  23. Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Illert M, Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70(3):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Souza RKM, Rocha SFBD, Martins RT, Kowacs PA, Ramina R. Gait in normal pressure hydrocephalus: characteristics and effects of the CSF tap test. Arq Neuropsiquiatr. 2018;76(5):324–31.

    Article  PubMed  Google Scholar 

  25. Liston R, Mickelborough J, Bene J, Tallis R. A new classification of higher level gait disorders in patients with cerebral multi-infarct states. Age Ageing. 2003;32(3):252–8.

    Article  PubMed  Google Scholar 

  26. Forssberg H, Johnels B, Steg G. Is parkinsonian gait caused by a regression to an immature walking pattern? Adv Neurol. 1984;40:375–9 PMID: 6695614.

    CAS  PubMed  Google Scholar 

  27. Suteerawattananon M, Morris GS, Etnyre BR, Jankovic J, Protas EJ. Effects of visual and auditory cues on gait in individuals with Parkinson’s disease. J Neurol Sci. 2004;219(1–2):63–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rajput A, Rajupt AH. Old age and Parkinson’s disease. In: Koller WC, Melamed E, editors. Handbook of clinical neurology, Vol. 84 (3rd series) Parkinson’s disease and related disorders, Part II. p. 427–44.

    Google Scholar 

  29. Sirkka J, Parviainen M, Jyrkkänen HK, Koivisto AM, Säisänen L, Rauramaa T, Leinonen V, Danner N. Upper limb dysfunction and activities in daily living in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2021;163(10):2675–83.

    Article  PubMed  Google Scholar 

  30. Gallagher RM, Marquez J, Osmotherly P. Cognitive and upper limb symptom changes from a tap test in Idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2018;174:92–6.

    Article  PubMed  Google Scholar 

  31. Nowak DA, Topka HR. Broadening a classic clinical triad: the hypokinetic motor disorder of normal pressure hydrocephalus also affects the hand. Exp Neurol. 2006;198(1):81–7.

    Article  PubMed  Google Scholar 

  32. Rosenberg GA. BrainEdema and disorders of cerebrospinal fluid circulation. In: Jankovic J, Mazziotta JC, Pomeroy SL, Newman NJ, editors. Bradley and Daroff’s neurology in clinical practice. Edinburgh/Lonfon/New York/Oxford/Philadelphia/St Louis/Sidney: Elsevier; 2022.

    Google Scholar 

  33. Molde K, Söderström L, Laurell K. Parkinsonian symptoms in normal pressure hydrocephalus: a population-based study. J Neurol. 2017;264(10):2141–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Selge C, Schoeberl F, Zwergal A, Nuebling G, Brandt T, Dieterich M, Schniepp R, Jahn K. Gait analysis in PSP and NPH: dual-task conditions make the difference. Neurology. 2018;90(12):e1021–8.

    Article  PubMed  Google Scholar 

  35. Selge C, Schoeberl F, Bergmann J, Kreuzpointner A, Bardins S, Schepermann A, Schniepp R, Koenig E, Mueller F, Brandt T, Dieterich M, Zwergal A, Jahn K. Subjective body vertical: a promising diagnostic tool in idiopathic normal pressure hydrocephalus? J Neurol. 2016;263(9):1819–27.

    Article  CAS  PubMed  Google Scholar 

  36. Blomsterwall E, Svantesson U, Carlsson U, Tullberg M, Wikkelsö C. Postural disturbance in patients with normal pressure hydrocephalus. Acta Neurol Scand. 2000;102(5):284–91.

    Article  CAS  PubMed  Google Scholar 

  37. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–16; discussion ii-v.

    Google Scholar 

  38. Tsakanikas D, Relkin N. Normal pressure hydrocephalus. Semin Neurol. 2007;27(1):58–65.

    Article  PubMed  Google Scholar 

  39. Hunter-Smith D, Pappas C, Devarajan S. Clinical inquiries. How can you best diagnose idiopathic normal pressure hydrocephalus? J Fam Pract. 2007;56(11):947–9. PMID: 17976345.

    Google Scholar 

  40. Bäcklund T, Frankel J, Israelsson H, Malm J, Sundström N. Trunk sway in idiopathic normal pressure hydrocephalus-quantitative assessment in clinical practice. Gait Posture. 2017;54:62–70.

    Article  PubMed  Google Scholar 

  41. Lundin F, Ledin T, Wikkelsø C, Leijon G. Postural function in idiopathic normal pressure hydrocephalus before and after shunt surgery: a controlled study using computerized dynamic posturography (EquiTest). Clin Neurol Neurosurg. 2013;115(9):1626–31.

    Article  CAS  PubMed  Google Scholar 

  42. Abram K, Bohne S, Bublak P, Karvouniari P, Klingner CM, Witte OW, Guntinas-Lichius O, Axer H. The effect of spinal tap test on different sensory modalities of postural stability in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2016;6(3):447–57.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Czerwosz L, Szczepek E, Blaszczyk JW, Sokolowska B, Dmitruk K, Dudzinski K, Jurkiewicz J, Czernicki Z. Analysis of postural sway in patients with normal pressure hydrocephalus: effects of shunt implantation. Eur J Med Res. 2009;14(Suppl 4):53–8.

    Google Scholar 

  44. Bugalho P, Alves L, Miguel R. Gait dysfunction in Parkinson’s disease and normal pressure hydrocephalus: a comparative study. J Neural Transm (Vienna). 2013;120(8):1201–7.

    Article  PubMed  Google Scholar 

  45. Nikaido Y, Akisue T, Kajimoto Y, Tucker A, Kawami Y, Urakami H, Iwai Y, Sato H, Nishiguchi T, Hinoshita T, Kuroda K, Ohno H, Saura R. Postural instability differences between idiopathic normal pressure hydrocephalus and Parkinson\’s disease. Clin Neurol Neurosurg. 2018;165:103–7.

    Article  PubMed  Google Scholar 

  46. Nikaido Y, Kajimoto Y, Akisue T, Urakami H, Kawami Y, Kuroda K, Ohno H, Saura R. Dynamic balance measurements can differentiate patients who fall from patients who do not fall in patients with idiopathic normal pressure hydrocephalus. Arch Phys Med Rehabil. 2019;100(8):1458–66.

    Article  PubMed  Google Scholar 

  47. Walker ML. Reference group data for the functional gait assessment. Phys Ther. 2007;(87)11:1468–77.

    Google Scholar 

  48. Nikaido Y, Akisue T, Kajimoto Y, Ikeji T, Kawami Y, Urakami H, Sato H, Nishiguchi T, Hinoshita T, Iwai Y, Kuroda K, Ohno H, Saura R. The effect of CSF drainage on ambulatory center of mass movement in idiopathic normal pressure hydrocephalus. Gait Posture. 2018;63:5–9.

    Article  PubMed  Google Scholar 

  49. Nikaido Y, Akisue T, Urakami H, Kajimoto Y, Kuroda K, Kawami Y, Sato H, Ohta Y, Hinoshita T, Iwai Y, Nishiguchi T, Ohno H, Saura R. Postural control before and after cerebrospinal fluid shunt surgery in idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2018;172:46–50.

    Article  PubMed  Google Scholar 

  50. Nikaido Y, Urakami H, Akisue T, Okada Y, Katsuta N, Kawami Y, Ikeji T, Kuroda K, Hinoshita T, Ohno H, Kajimoto Y, Saura R. Associations among falls, gait variability, and balance function in idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2019;183: 105385.

    Article  PubMed  Google Scholar 

  51. Shumway-Cook A, Woollacott M. Motor control. Philadelphia: Wolters Kluwer; 2022.

    Google Scholar 

  52. de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain. 2011;134:73.

    Article  PubMed  Google Scholar 

  53. Nutt JG, Marsden CD, Thompson PD. Human walking and higher-level gait disorders, particularly in the elderly. Neurology. 1993;43(2):268–79.

    Article  CAS  PubMed  Google Scholar 

  54. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med. 2002;347(22):1761–8.

    Article  PubMed  Google Scholar 

  55. Hou Y, Yang S, Li Y, Qin W, Yang L, Hu W. Association of enlarged perivascular spaces with upper extremities and gait impairment: an observational, prospective cohort study. Front Neurol. 2022;26(13): 993979.

    Article  Google Scholar 

  56. van der Holst HM, Tuladhar AM, Zerbi V, van Uden IWM, de Laat KF, van Leijsen EMC, Ghafoorian M, Platel B, Bergkamp MI, van Norden AGW, Norris DG, van Dijk EJ, Kiliaan AJ, de Leeuw FE. White matter changes and gait decline in cerebral small vessel disease. Neuroimage Clin. 2017;7(17):731–8.

    Google Scholar 

  57. Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, et al. Gait analysis in idiopathic normal pressure hydrocephalus–which parameters respond to the CSF tap test? Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2000;111:1678–86.

    Article  CAS  Google Scholar 

  58. Williams MA, Thomas G, de Lateur B, Imteyaz H, Rose JG, Shore WS, et al. Objective assessment of gait in normal-pressure hydrocephalus. Am J Phys Med Rehabil. 2008;87:39–45.

    Article  PubMed  Google Scholar 

  59. Hellström P, Klinge P, Tans J, Wikkelsø C. A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand. 2012;126:229–37.

    Article  PubMed  Google Scholar 

  60. Kiefer M, Unterberg A. The differential diagnosis and treatment of normal-pressure hydrocephalus. Dtsch Arzteblatt Int. 2012;109:15–25; quiz 26.

    Google Scholar 

  61. Skalický P, Mládek A, Bradáč O. Normotenzní hydrocefalus. Cesk Slov Neurol N. 2021;84/117(6):512–34.

    Google Scholar 

  62. Bradley WG. Normal pressure hydrocephalus new concepts on etiology and diagnosis. AJNR Am J Neuroradiol. 2000;21:1586–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. Continuum. 2016;22(2):579–99.

    Google Scholar 

  64. Wikkelsø C, Hellström P, Klinge PM, Tans JT. The European iNPH multicentre study on the predictive values of resistance to CSF outflow and the CSF tap test in patients with idiopathic normal pressure hydrocephalus. European iNPH multicentre study group. J Neurol Neurosurg Psychiatry. 2013;84(5):562–8.

    Google Scholar 

  65. Grasso G, Torregrossa F, Leone L, Frisella A, Landi A. Long-term efficacy of shunt therapy in idiopathic normal pressure hydrocephalus. World Neurosurg. 2019;129:e458–63.

    Article  PubMed  Google Scholar 

  66. Raccagni C, Nonnekes J, Bloem BR, Peball M, Boehme C, Seppi K, Wenning GK. Gait and postural disorders in parkinsonism: a clinical approach. J Neurol. 2020;267(11):3169–76.

    Article  PubMed  Google Scholar 

  67. Nürnberger L, Klein C, Baudrexel S, Roggendorf J, Hildner M, Chen S, Kang JS, Hilker R, Hagenah J. Ultrasound-based motion analysis demonstrates bilateral arm hypokinesia during gait in heterozygous PINK1 mutation carriers. Mov Disord. 2015;30(3):386–92.

    Article  PubMed  Google Scholar 

  68. Yokochi F. Lateral flexion in Parkinson’s disease and Pisa syndrome. J Neurol. 2006;253(Suppl 7):VII17–20.

    Google Scholar 

  69. Doherty KM, van de Warrenburg BP, Peralta MC, Silveira-Moriyama L, Azulay JP, Gershanik OS, Bloem BR. Postural deformities in Parkinson’s disease. Lancet Neurol. 2011;10(6):538–49.

    Article  PubMed  Google Scholar 

  70. Pistacchi M, Gioulis M, Sanson F, De Giovannini E, Filippi G, Rossetto F, Zambito Marsala S. Gait analysis and clinical correlations in early Parkinson’s disease. Funct Neurol. 2017;32(1):28–34.

    Google Scholar 

  71. Borm CDJM, Krismer F, Wenning GK, Seppi K, Poewe W, Pellecchia MT, Barone P, Johnsen EL, Østergaard K, Gurevich T, Djaldetti R, Sambati L, Cortelli P, Petrović I, Kostić VS, Brožová H, Růžička E, Marti MJ, Tolosa E, Canesi M, Post B, Nonnekes J, Bloem BR. European MSA study group (EMSA-SG). Axial motor clues to identify atypical parkinsonism: a multicentre European cohort study. Parkinsonism Relat Disord. 2018;56:33–40.

    Google Scholar 

  72. Giladi N, Nieuwboer A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord. 2008;23(Suppl 2):S423–5.

    Article  PubMed  Google Scholar 

  73. Falla M, Cossu G, Di Fonzo A. Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci Adv Neurol. 2022;43(3):1627–39.

    Google Scholar 

  74. Fahn S. The freezing phenomenon in parkinsonism. 1995;67:53–63.

    Google Scholar 

  75. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol. 2003;10(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  76. Vercruysse S, Gilat M, Shine JM, Heremans E, Lewis S, Nieuwboer A. Freezing beyond gait in Parkinson’s disease: a review of current neurobehavioral evidence. Neurosci Biobehav Rev. 2014;43:213–27.

    Article  CAS  PubMed  Google Scholar 

  77. Espay AJ, Fasano A, van Nuenen BF, Payne MM, Snijders AH, Bloem BR. “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology. 2012;78(7):454–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim SM, Kim DH, Yang IS, Ha SW, Han JH. Gait patterns in Parkinson’s disease with or without cognitive impairment. Dement Neurocogn Disord. 2018;17(2):57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chelban V, Bocchetta M, Has sanein S et al. An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol. 2019;266(4):1036–45.

    Google Scholar 

  80. van de Warrenburg BP, Cordivari C, Ryan AM, Phadke R, Holton JL, Bhatia KP, Hanna MG, Quinn NP. The phenomenon of disproportionate antecollis in Parkinson’s disease and multiple system atrophy. Mov Disord. 2007;22(16):2325–31.

    Article  PubMed  Google Scholar 

  81. Sławek J, Derejko M, Lass P, Dubaniewicz M. Camptocormia or Pisa syndrome in multiple system atrophy. Clin Neurol Neurosurg. 2006;108(7):699–704.

    Article  PubMed  Google Scholar 

  82. Köllensperger M, Geser F, Seppi K, Stampfer-Kountchev M, Sawires M, Scherfler C, Boesch S, Mueller J, Koukouni V, Quinn N, Pellecchia MT, Barone P, Schimke N, Dodel R, Oertel W, Dupont E, Østergaard K, Daniels C, Deuschl G, Gurevich T, Giladi N, Coelho M, Sampaio C, Nilsson C, Widner H, Sorbo FD, Albanese A, Cardozo A, Tolosa E, Abele M, Klockgether T, Kamm C, Gasser T, Djaldetti R, Colosimo C, Meco G, Schrag A, Poewe W, Wenning GK. European MSA study group. Red flags for multiple system atrophy. Mov Disord. 2008;23(8):1093–9.

    Google Scholar 

  83. Sidoroff V, Raccagni C, Kaindlstorfer C, Eschlboeck S, Fanciulli A, Granata R, Eskofier B, Seppi K, Poewe W, Willeit J, Kiechl S, Mahlknecht P, Stockner H, Marini K, Schorr O, Rungger G, Klucken J, Wenning G, Gaßner H. Characterization of gait variability in multiple system atrophy and Parkinson’s disease. J Neurol. 2021;268(5):1770–9.

    Article  PubMed  Google Scholar 

  84. Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E, Nieuwboer A. Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov Disord. 2010;25(15):2563–70.

    Article  PubMed  Google Scholar 

  85. Gassner H, Raccagni C, Eskofier BM, Klucken J, Wenning GK. The diagnostic scope of sensor-based gait analysis in atypical Parkinsonism: further observations. Front Neurol. 2019;22(10):5.

    Article  Google Scholar 

  86. Picillo M, Ricciardi C, Tepedino MF, Abate F, Cuoco S, Carotenuto I, Erro R, Ricciardelli G, Russo M, Cesarelli M, Barone P, Amboni M. Gait analysis in progressive supranuclear palsy phenotypes. Front Neurol. 2021;10(12): 674495.

    Article  Google Scholar 

  87. Lopez G, Bayulkem K, Hallett M. Progressive supranuclear palsy (PSP): Richardson syndrome and other PSP variants. Acta Neurol Scand. 2016;134(4):242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ali F, Josephs K. The dia¬gnosis of progressive supranuclear palsy: current opinions and challenges. Expert Rev Neurother. 2018;18(7):603–16.

    Article  CAS  PubMed  Google Scholar 

  89. Nonnekes J, Goselink RJM, Růžička E, Fasano A, Nutt JG, Bloem BR. Neurological disorders of gait, balance and posture: a sign-based approach. Nat Rev Neurol. 2018;14(3):183–9.

    Article  PubMed  Google Scholar 

  90. Litvan I. Progressive supranuclear palsy revisited. Acta Neurol Scand. 1998;98(6):73–84.

    PubMed  Google Scholar 

  91. Panyakaew P, Anan C, Bhidayasiri R. Posturographic abnormalities in ambulatory atypical parkinsonian disorders: differentiating characteristics. Parkinsonism Relat Disord. 2019;66:94–9.

    Article  PubMed  Google Scholar 

  92. Ondo W, Warrior D, Overby A, et al. Computerized posturography analysis of progressive supranuclear palsy: a case-control comparison with Parkinson‘s disease and healthy controls. Arch Neurol. 2000;57(10):1464–9.

    Article  CAS  PubMed  Google Scholar 

  93. Ebersbach G, Moreau C, Gandor F, Defebvre L, Devos D. Clinical syndromes: Parkinsonian gait. Mov Disord. 2013;28(11):1552–9.

    Article  PubMed  Google Scholar 

  94. Egerton T, Williams DR, Iansek R. Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol. 2012;2(12):116.

    Article  Google Scholar 

  95. Dale ML, Horak FB, Wright WG, et al. Impaired perception of surface tilt in progressive supranuclear palsy. PLoS ONE. 2017;12(3): e0173351.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kammermeier S, Maierbeck K, Dietrich L et al. Qualitative postural control differences in idiopathic Parkinson’s disease versus progressive supranuclear palsy with dynamic-on-static platform tilt. Clin Neurophysiol. 2018;129(6):1137–47.

    Google Scholar 

  97. Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer’s disease. JAm Geriatr Soc. 2003;51(11):1633–7.

    Article  Google Scholar 

  98. van Iersel MB, Hoefsloot W, Munneke M, Bloem BR, Olde Rikkert MG. Systematic review of quantitative clinical gait analysis in patients with dementia. Z Gerontol Geriatr. 2004;37(1):27–32.

    Article  PubMed  Google Scholar 

  99. McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology. 1996;47(5):1113–24.

    Article  CAS  PubMed  Google Scholar 

  100. Gnanalingham K, Byrne E, Thornton A, Sambrook M, Bannister P. Motor and cognitive function in Lewy body dementia: comparison with Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry. 1997;62:243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Waite LM, Broe GA, Grayson DA, Creasey H. Motor function and disability in the dementias. Int J Geriatr Psychiatry. 2000;15:897–903.

    Article  CAS  PubMed  Google Scholar 

  102. Merory JR, Wittwer JE, Rowe CC, Webster KE. Quantitative gait analysis in patients with dementia with Lewy bodies and Alzheimer’s disease. Gait Posture. 2007;26(3):414–9.

    Article  PubMed  Google Scholar 

  103. Mc Ardle R, Del Din S, Galna B, Thomas A, Rochester L. Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors? Gait Posture. 2020;76:372–6.

    Google Scholar 

  104. Mc Ardle R, Galna B, Donaghy P, Thomas A, Rochester L. Do Alzheimer’s and Lewy body disease have discrete pathological signatures of gait? Alzheimers Dement. 2019;15(10):1367–77.

    Article  PubMed  Google Scholar 

  105. Mathias K, Pinto A, Matar E, Phillips J, Lewis S, Ehgoetz Martens K. Differentiating gait impairments in early Parkinson’s disease and early dementia with Lewy bodies [abstract]. Mov Disord. 2021;36(suppl 1).

    Google Scholar 

  106. Saranza GM, Whitwell JL, Kovacs GG. Lang AE corticobasal degeneration. Int Rev Neurobiol. 2019;149:87–136.

    Article  PubMed  Google Scholar 

  107. Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, Bloom L, Bower J, Boxer AL, Dale ML, Dhall R, Duquette A, Fernandez HH, Fleisher JE, Grossman M, Howell M, Kerwin DR, Leegwater-Kim J, Lepage C, Ljubenkov PA, Mancini M, McFarland NR, Moretti P, Myrick E, Patel P, Plummer LS, Rodriguez-Porcel F, Rojas J, Sidiropoulos C, Sklerov M, Sokol LL, Tuite PJ, VandeVrede L, Wilhelm J, Wills AA, **e T, Golbe LI. Best practices in the clinical management of progressive supranuclear palsy and corticobasal syndrome: a consensus statement of the CurePSP centers of care. Front Neurol. 2021;1(12): 694872.

    Article  Google Scholar 

  108. Rossor MN, Tyrrell PJ, Warrington EK, Thompson PD, Marsden CD, Lantos P. Progressive frontal gait disturbance with atypical Alzheimer’s disease and corticobasal degeneration. J Neurol Neurosurg Psychiatry. 1999;67(3):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chahine LM, Rebeiz T, Rebeiz JJ, Grossman M, Gross RG. Corticobasal syndrome: five new things. Neurol Clin Pract. 2014;4(4):304–12.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Rektor I, Bohnen NI, Korczyn AD, Gryb V, Kumar H, Kramberger MG, de Leeuw FE, Pirtošek Z, Rektorová I, Schlesinger I, Slawek J, Valkovič P, Veselý B. An updated diagnostic approach to subtype definition of vascular parkinsonism—Recommendations from an expert working group. Parkinsonism Relat Disord. 2018;49:9–16.

    Article  PubMed  Google Scholar 

  111. Zijlmans JC, Daniel SE, Hughes AJ, Révész T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord. 2004;19(6):630–40.

    Article  PubMed  Google Scholar 

  112. Demirkiran M, Bozdemir H, Sarica Y. Vascular parkinsonism: a distinct, heterogeneous clinical entity. Acta Neurol Scand. 2001;104(2):63–7.

    Article  CAS  PubMed  Google Scholar 

  113. Gupta D, Kuruvilla A. Vascular parkinsonism: what makes it different? Postgrad Med J. 2011;87(1034):829–36.

    Google Scholar 

  114. Thompson PD, Marsden CD. Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord. 1987;2(1):1–8.

    Google Scholar 

  115. Giladi N, Kao R, Fahn S. Freezing phenomenon in patients with parkinsonian syndromes. Mov Disord. 1997;12(3):302–5.

    Google Scholar 

Download references

Funding

Supported by the project National Institute for Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107)—funded by the European Union—Next Generation EU; Charles University: Cooperation Program in Neuroscience; General University Hospital in Prague project MH CZ-DRO-VFN64165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Klempíř .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gál, O., Hoskovcová, M., Klempíř, J. (2023). Differential Diagnosis of Gait and Balance Impairment in Idiopathic Normal Pressure Hydrocephalus. In: Bradac, O. (eds) Normal Pressure Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-031-36522-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36522-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36521-8

  • Online ISBN: 978-3-031-36522-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation