CBCT and Software

  • Chapter
  • First Online:
Transarterial Chemoembolization (TACE)

Abstract

Cone-beam computed tomography (CBCT) was developed in the early 80 s by the Biodynamics Research Unit at the Mayo Clinic for develo** “high temporal resolution and synchronous volume scanning” [1]. Over the past 40 years, CBCT has evolved in two directions: aided interventional radiology (IR) procedures and in oral/maxillofacial radiology [2]. These two streams were developed for two different reasons, in particular, in the set of interventional radiology procedures, for the possibility to supply unique planning and prognostic information and, concerning oral/maxillofacial radiology, for high-quality images, compact size, low cost, and low-ionizing radiation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robb RA. The dynamic spatial Reconstructor: an X-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans Med Imaging. 1982;1(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  2. Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S102–21.

    PubMed  PubMed Central  Google Scholar 

  3. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin N Am. 2008;52(4):707–30. v

    Article  PubMed  Google Scholar 

  4. Tognolini A, et al. C-arm computed tomography for hepatic interventions: a practical guide. J Vasc Interv Radiol. 2010;21(12):1817–23.

    Article  PubMed  Google Scholar 

  5. Yorkston J, Rowlands J. Flat panel detectors for digital radiography. 2000.

    Google Scholar 

  6. Tacher V, et al. How I do it: cone-beam CT during Transarterial chemoembolization for liver cancer. Radiology. 2015;274(2):320–34.

    Article  PubMed  Google Scholar 

  7. Lucatelli P, et al. Single injection dual phase CBCT technique ameliorates results of trans-arterial chemoembolization for hepatocellular cancer. Transl Gastroenterol Hepatol. 2017;2:83.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaw CC. Cone beam computed tomography. Taylor & Francis; 2014.

    Book  Google Scholar 

  9. Floridi C, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications. Radiol Med. 2014;119(7):521–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grass M, et al. Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph. 1999;23(6):311–21.

    Article  CAS  PubMed  Google Scholar 

  11. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Fleischmann D. Improving spatial resolution at CT: development, benefits, and pitfalls. Radiology. 2018;289(1):261–2.

    Article  PubMed  Google Scholar 

  13. Miller DL, et al. Quality improvement guidelines for recording patient radiation dose in the medical record for fluoroscopically guided procedures. J Vasc Interv Radiol. 2012;23(1):11–8.

    Article  PubMed  Google Scholar 

  14. Suzuki S, et al. Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Intervent Radiol. 2011;34(2):376–82.

    Article  PubMed  Google Scholar 

  15. Loffroy R, et al. Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology. 2013;266(2):636–48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP, 2007. 37(2–4): p. 1–332.

    Google Scholar 

  17. Kothary N, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol. 2011;22(11):1535–43.

    Article  PubMed  Google Scholar 

  18. Lee IJ, et al. Cone-beam CT hepatic arteriography in chemoembolization for hepatocellular carcinoma: angiographic image quality and its determining factors. J Vasc Interv Radiol. 2014;25(9):1369–79. quiz 1379-e1

    Article  PubMed  Google Scholar 

  19. Mitchell DG, et al. LI-RADS (liver imaging reporting and data system): summary, discussion, and consensus of the LI-RADS Management working group and future directions. Hepatology. 2015;61(3):1056–65.

    Article  PubMed  Google Scholar 

  20. Lee IJ, et al. Cone-beam computed tomography (CBCT) hepatic arteriography in chemoembolization for hepatocellular carcinoma: performance depicting tumors and tumor feeders. Cardiovasc Intervent Radiol. 2015;38(5):1218–30.

    Article  PubMed  Google Scholar 

  21. Ushijima Y, et al. Detecting hepatic nodules and identifying feeding arteries of hepatocellular carcinoma: efficacy of cone-beam computed tomography in transcatheter arterial chemoembolization. Hepatoma Res. 2016;2:231–6.

    Article  CAS  Google Scholar 

  22. Pung L, et al. The role of cone-beam CT in Transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. J Vasc Interv Radiol. 2017;28(3):334–41.

    Article  PubMed  Google Scholar 

  23. Mikhail AS, et al. Map** drug dose distribution on CT images following Transarterial chemoembolization with radiopaque drug-eluting beads in a rabbit tumor model. Radiology. 2018;289(2):396–404.

    Article  PubMed  Google Scholar 

  24. Lucatelli P, et al. Intra-procedural dual phase cone beam computed tomography has a better diagnostic accuracy over pre-procedural MRI and MDCT in detection and characterization of HCC in cirrhotic patients undergoing TACE procedure. Eur J Radiol. 2020;124:108806.

    Article  PubMed  Google Scholar 

  25. Abdel Razek AAK, et al. Liver imaging reporting and data system version 2018: what radiologists need to know. J Comput Assist Tomogr. 2020;44(2):168–77.

    Article  PubMed  Google Scholar 

  26. EASL Clinical Practice Guidelines. Management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.

    Article  Google Scholar 

  27. Lucatelli P, et al. Sequential dual-phase cone-beam CT is able to intra-procedurally predict the one-month treatment outcome of multi-focal HCC, in course of degradable starch microsphere TACE. Radiol Med. 2019;124(12):1212–9.

    Article  PubMed  Google Scholar 

  28. Lucatelli P, et al. Are radiopaque beads a real advantage? Radiology. 2019;290(3):852.

    Article  PubMed  Google Scholar 

  29. Orlacchio A, et al. Role of cone-beam CT in the intraprocedural evaluation of chemoembolization of hepatocellular carcinoma. J Oncol. 2021;2021:8856998.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iwazawa J, et al. C-arm CT for assessing initial failure of iodized oil accumulation in chemoembolization of hepatocellular carcinoma. Am J Roentgenol. 2011;197(2):W337–42.

    Article  Google Scholar 

  31. Suk Oh J, et al. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol. 2013;24(4):483–9.

    Article  PubMed  Google Scholar 

  32. Miyayama S, et al. Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging. 2009;34(4):502–6.

    Article  PubMed  Google Scholar 

  33. Kim KA, et al. The efficacy of cone-beam CT-based liver perfusion map** to predict initial response of hepatocellular carcinoma to transarterial chemoembolization. J Vasc Interv Radiol. 2019;30(3):358–69.

    Article  PubMed  Google Scholar 

  34. Syha R, et al. Parenchymal blood volume assessed by C-arm-based computed tomography in immediate posttreatment evaluation of drug-eluting bead Transarterial chemoembolization in hepatocellular carcinoma. Investig Radiol. 2016;51(2):121–6.

    Article  CAS  Google Scholar 

  35. Choi SY, et al. Usefulness of cone-beam ct-based liver perfusion map** for evaluating the response of hepatocellular carcinoma to conventional transarterial chemoembolization. J Clin Med. 2021;10:4.

    Google Scholar 

  36. Forner A, et al. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis. 2010;30(01):061–74.

    Article  CAS  Google Scholar 

  37. Vogel A, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2018;29(Supplement_4):iv238–55.

    Article  CAS  PubMed  Google Scholar 

  38. McVey JC, Sasaki K, Firl DJ. Risk assessment criteria in liver transplantation for hepatocellular carcinoma: proposal to improve transplant oncology. Hepat Oncol. 2020;7(3):HEP26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cornelis FH, et al. Hepatic arterial embolization using cone beam CT with tumor feeding vessel detection software: impact on hepatocellular carcinoma response. Cardiovasc Intervent Radiol. 2018;41(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  40. Joo SM, et al. Optimized performance of flight plan during chemoembolization for hepatocellular carcinoma: importance of the proportion of segmented tumor area. Korean J Radiol. 2016;17(5):771–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tamai T, et al. Reduction effect of the quantity of radiation exposure and contrast media by image support system in transarterial chemoembolization for the treatment of hepatocellular carcinoma. J Gastroenterol Hepatol. 2018;33(5):1115–22.

    Article  PubMed  Google Scholar 

  42. Cui Z, et al. A systematic review of automated feeder detection software for locoregional treatment of hepatic tumors. Diagn Interv Imaging. 2020;101(7):439–49.

    Article  CAS  PubMed  Google Scholar 

  43. Miyayama S, et al. Outcomes of patients with hepatocellular carcinoma treated with conventional Transarterial chemoembolization using guidance software. J Vasc Interv Radiol. 2019;30(1):10–8.

    Article  PubMed  Google Scholar 

  44. Chiaradia M, et al. Sensitivity and reproducibility of automated feeding artery detection software during Transarterial chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2018;29(3):425–31.

    Article  PubMed  Google Scholar 

  45. Yao X, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer. Acad Radiol. 2018;25(8):1031–7.

    Article  PubMed  Google Scholar 

  46. Soliman MM, et al. Use of virtual injection software to aid in microcatheter positioning during Transarterial chemoembolization. J Vasc Interv Radiol. 2019;30(10):1646–8.

    Article  PubMed  Google Scholar 

  47. Ortiz AK, et al. Injection simulation software identifies missed tumor-supplying vessel in a patient with residual disease after Transarterial chemoembolization for hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2021;44(5):812–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Rubeis, G., Castiello, G., Giuliani, M.S., Riu, P.R., Fabiano, S., Cianni, R. (2023). CBCT and Software. In: Lucatelli, P. (eds) Transarterial Chemoembolization (TACE) . Springer, Cham. https://doi.org/10.1007/978-3-031-36261-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36261-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36260-6

  • Online ISBN: 978-3-031-36261-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation