The Role of Dam** in Complex Structural Dynamics: Data-Driven Approaches

  • Chapter
  • First Online:
Calm, Smooth and Smart

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 102))

Abstract

The Dynamics Group at Hamburg University of Technology has been working on two consecutive research projects supervised by Prof. Norbert Hoffmann within the Priority Programme SPP 1897. The first project ‘Understanding and improving energy dissipation and dam** in structures subject to self-excited irregular vibrations’ focused on the chaotic nature of friction-excited dynamics and how properties of those complex vibrations can be leveraged for understanding dam** and stability. Within the second project ’Understanding and improving energy dissipation and vibration dam** in structures subject to self-excited irregular vibrations - linking data driven approaches with modelling’, data-driven techniques were linked with conventional modeling approaches to arrive at hybrid simulation and identification approaches for dam** in complex structural dynamics. The work at hand summarizes central findings and novel approaches that have been published in a number of peer-reviewed journal articles, poses new research questions, and gives an outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nitsche, R., Gaul, L.: Lyapunov design of dam** controllers. Arch. Appl. Mech. 72(11), 865–874 (2003)

    Article  MATH  Google Scholar 

  2. Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3/4), 207 (2005)

    Article  Google Scholar 

  3. Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21(6), 2374–2393 (2007)

    Article  Google Scholar 

  4. Charakopoulos, A.K., Karakasidis, T.E., Papanicolaou, P.N., Liakopoulos, A.: The application of complex network time series analysis in turbulent heated jets. Chaos (Woodbury, N.Y.) 24(2), 024408 (2014)

    Google Scholar 

  5. Wiercigroch, M.: Chaotic vibration of a simple model of the machine tool-cutting process system. J. Vib. Acoust. 119(3), 468 (1997)

    Article  Google Scholar 

  6. Pilipchuk, V., Olejnik, P., Awrejcewicz, J.: Transient friction-induced vibrations in a 2-DOF model of brakes. J. Sound Vib. 344, 297–312 (2015)

    Article  Google Scholar 

  7. Gandia, R.M., Antonialli, F., Cavazza, B.H., Neto, A.M., Lima, D.A.d., Sugano, J.Y., Nicolai, I., Zambalde, A.L.: Autonomous vehicles: scientometric and bibliometric review. Trans. Rev. 39(1), 9–28 (2019)

    Google Scholar 

  8. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018)

    Google Scholar 

  9. Strogatz, S.H.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Studies in Nonlinearity, 2nd edn. Perseus Books, Cambridge (2001)

    Google Scholar 

  10. Mitchell, M.: Complexity: A guided tour. Oxford University Press, Oxford and New York (2009)

    MATH  Google Scholar 

  11. Oberst, S., Lai, J.: Chaos in brake squeal noise. J. Sound Vib. 330(5), 955–975 (2011)

    Article  Google Scholar 

  12. Oberst, S., Lai, J.: Statistical analysis of brake squeal noise. J. Sound Vib. 330(12), 2978–2994 (2011)

    Article  Google Scholar 

  13. Wernitz, B., Hoffmann, N.: Recurrence analysis and phase space reconstruction of irregular vibration in friction brakes: signatures of chaos in steady sliding. J. Sound Vib. 331(16), 3887–3896 (2012)

    Article  Google Scholar 

  14. Renson, L., Gonzalez-Buelga, A., Barton, D.A., Neild, S.A.: Robust identification of backbone curves using control-based continuation. J. Sound Vib. 367, 145–158 (2016)

    Article  Google Scholar 

  15. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hoffmann, N., Gaul, L.: Effects of dam** on mode-coupling instability in friction induced oscillations. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 83(8), 524–534 (2003)

    Article  MATH  Google Scholar 

  18. Kirillov, O.N., Verhulst, F.: Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella? ZAMM 90(6), 462–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirillov, O.N.: Nonconservative Stability Problems of Modern Physics, vol. 14. Walter de Gruyter (2013)

    Google Scholar 

  20. Sinou, J.J., Jézéquel, L.: The influence of dam** on the limit cycles for a self-exciting mechanism. J. Sound Vib. 304(3–5), 875–893 (2007)

    Article  Google Scholar 

  21. Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., et al.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)

    Article  Google Scholar 

  22. Tiedemann, M., Kruse, S., Hoffmann, N.: Dominant dam** effects in friction brake noise, vibration and harshness: the relevance of joints. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 229(6), 728–734 (2015)

    Article  Google Scholar 

  23. Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)

    Article  MATH  Google Scholar 

  24. Akay, A.: Acoustics of friction. J. Acoust. Soc. Amer. 111(4), 1525–1548 (2002)

    Article  Google Scholar 

  25. Takens, F.: Detecting Strange Attractors in Turbulence: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer (1981)

    Google Scholar 

  26. Ruelle, D., Takens, F.: On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 1–44 (1971)

    Google Scholar 

  27. Rhodes, C., Morari, M.: The false nearest neighbors algorithm: an overview. Comput. & Chem. Eng. 21, S1149–S1154 (1997)

    Article  Google Scholar 

  28. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Article  Google Scholar 

  29. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. (EPL) 4(9), 973–977 (1987)

    Article  Google Scholar 

  30. Marwan, N., Kurths, J.: Line structures in recurrence plots. Phys. Lett. A 336(4–5), 349–357 (2005)

    Article  MATH  Google Scholar 

  31. Webber, C.L., Marwan, N. (eds.): Recurrence Quantification Analysis. Understanding Complex Systems. Springer International Publishing, Cham (2015)

    Google Scholar 

  32. Stender, M., Oberst, S., Tiedemann, M., Hoffmann, N.: Complex machine dynamics: systematic recurrence quantification analysis of disk brake vibration data. Nonlinear Dyn. 267(1), 105 (2019)

    Google Scholar 

  33. Stender, M., Di Bartolomeo, M., Massi, F., Hoffmann, N.: Revealing transitions in friction-excited vibrations by nonlinear time-series analysis. Nonlinear Dyn. 47(7), 209 (2019)

    MATH  Google Scholar 

  34. Stender, M., Tiedemann, M., Hoffmann, N.: Characterization of complex states for friction-excited systems. PAMM 17(1), 45–46 (2017)

    Article  Google Scholar 

  35. Stender, M., Tiedemann, M., Hoffmann, N., Oberst, S.: Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal. Mech. Syst. Signal Process. 107, 439–451 (2018)

    Article  Google Scholar 

  36. Di Bartolomeo, M., Lazzari, A., Stender, M., Berthier, Y., Saulot, A., Massi, F.: Experimental observation of thermally-driven frictional instabilities on C/C materials. Tribol. Int. 106724 (2020)

    Google Scholar 

  37. Stender, M., Tiedemann, M., Hoffmann, L., Hoffmann, N.: Determining growth rates of instabilities from time-series vibration data: methods and applications for brake squeal. Mech. Syst. Signal Process. 129, 250–264 (2019)

    Article  Google Scholar 

  38. Gnanasambandham, C., Stender, M., Hoffmann, N., Eberhard, P.: Multi-scale dynamics of particle dampers using wavelets: extracting particle activity metrics from ring down experiments. J. Sound Vib. 454, 1–13 (2019)

    Article  Google Scholar 

  39. Stender, M., Oberst, S., Hoffmann, N.: Recovery of differential equations from impulse response time series data for model identification and feature extraction. Vibration 2(1), 25–46 (2019)

    Article  Google Scholar 

  40. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 113(15), 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Didonna, M., Stender, M., Papangelo, A., Fontanela, F., Ciavarella, M., Hoffmann, N.: Reconstruction of governing equations from vibration measurements for geometrically nonlinear systems. Lubricants 7(8), 64 (2019)

    Article  Google Scholar 

  42. Papangelo, A., Hoffmann, N., Grolet, A., Stender, M., Ciavarella, M.: Multiple spatially localized dynamical states in friction-excited oscillator chains. J. Sound Vib. 417, 56–64 (2018)

    Article  Google Scholar 

  43. Stender, M., Tiedemann, M., Hoffmann, N.: Energy harvesting below the onset of flutter. J. Sound Vib. 458, 17–21 (2019)

    Article  Google Scholar 

  44. Jahn, M., Stender, M., Tatzko, S., Hoffmann, N., Grolet, A., Wallaschek, J.: The extended periodic motion concept for fast limit cycle detection of self-excited systems. Comput. & Struct. 106–139 (2019)

    Google Scholar 

  45. Tatzko, S., Stender, M., Jahn, M., Hoffmann, N.: Limit cycle computation of self-excited dynamic systems using nonlinear modes. PAMM 20(1) (2021)

    Google Scholar 

  46. Stender, M., Jahn, M., Hoffmann, N., Wallaschek, J.: Hyperchaos co-existing with periodic orbits in a frictional oscillator. J. Sound Vib. 472, 115–203 (2020)

    Article  Google Scholar 

  47. Stender, M., Hoffmann, N.: bSTAB: an open-source software for computing the basin stability of multi-stable dynamical systems. Nonlinear Dynamics (2021)

    Google Scholar 

  48. Stender, M., Hoffmann, N., Papangelo, A.: The basin stability of bi-stable friction-excited oscillators. Lubricants 8(12), 105 (2020)

    Article  Google Scholar 

  49. Nitti, A., Stender, M., Hoffmann, N., Papangelo, A.: Spatially localized vibrations in a rotor subjected to flutter. Nonlinear Dynamics (2021)

    Google Scholar 

  50. Stender, M., Tiedemann, M., Spieler, D., Schoepflin, D., Hoffmann, N., Oberst, S.: Deep learning for brake squeal: brake noise detection, characterization and prediction. Mech. Syst. Signal Process. 149, 107181 (2021)

    Article  Google Scholar 

  51. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat. Commun. 8(1), 19 (2017)

    Article  Google Scholar 

  52. Stender, M.: Data-driven techniques for the nonlinear dynamics of mechanical structures. Doctoral thesis, Technische Universität Hamburg (2020)

    Google Scholar 

  53. Stender, M., Schmid, D., Hoffmann, N.: Multiple scales in complex friction-induced disk brake vibrations. In: 15th Experimental Chaos and Complexity Conference, Madrid, vol. poster presentation (2018)

    Google Scholar 

Download references

Acknowledgements

We like to thank the SPP 1897 project coordination at University of Stuttgart for running and organizing the programme. The discussions and gatherings within the Priority Programme were always highly interesting and very fruitful. Further, we like to thank the German Research Foundation (DFG) for funding the projects HO \(3851/12-1\) and HO \(3852/12-2\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merten Stender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stender, M., Hoffmann, N. (2024). The Role of Dam** in Complex Structural Dynamics: Data-Driven Approaches. In: Eberhard, P. (eds) Calm, Smooth and Smart. Lecture Notes in Applied and Computational Mechanics, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-031-36143-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36143-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36142-5

  • Online ISBN: 978-3-031-36143-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation