Geomechanical Modelling the Evolution of a Connected Natural Fracture Network to Explain Fluid Flow Variations Across a Fractured Chalk-Marl Reservoir

  • Chapter
  • First Online:
Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea

Abstract

Natural fractures are frequent in the chalk-marl successions of the Lower Cretaceous deposits constituting the Valdemar Field in the Danish Central Graben. However detailed knowledge on their evolution, nucleation and propagation has not previously been modelled and this study is the first to present numerical discrete fracture network models of the fracture patterns in the Lower Cretaceous strata of the Danish North Sea Basin. These strata are of heterogeneous nature and composed of interbeds of sedimentary facies comprising chalk, slightly marly chalk, marly chalk, chalky marlstone and marlstone. This lithological spectrum results in a range of mechanical properties. The Valdemar Field produces from three main reservoir intervals: the lower Tuxen, the middle-upper Tuxen, and the upper Sola. These intervals comprise a variety of sedimentary facies, and contain differing densities of natural fractures. The sedimentological subdivision of the reservoir correlates with mechanical variations within the different layers, and core studies have shown that the characteristics of the natural fractures vary according to the sedimentary facies. The three reservoir units therefore form the basis for the Discrete Fracture Network simulations, but additional simulations are also carried out on a single 10ft thick clean chalk bed within the upper Tuxen, which may act as a separate mechanical layer. The simulations are carried out by DFM Generator, a code for dynamic fracture modelling developed at Danish Offshore Technology Centre (DOTC) that simulates the growth of fracture networks based on the geomechanical properties of the lithology and the stress and strain history. This study presents geomechanical models of numerical simulations of discrete fracture networks modelled across selected reservoir zones in order to compare the nucleation, evolution, and propagation of fractures. The purpose of this study is to evaluate fracture patterns in the reservoir units and further to conduct a comparative study near two selected wells, one from an area of high productivity at the Jens High and one from an area of lower productivity at the Bo structure. The DFN models illustrate that the well with good production has well connected and dense fracture networks around it to facilitate fluid flow whereas the second well is adjacent to fractures that are widely spaced, less connected and primarily one directional. Thus, we propose that geomechanically based DFN models can act as a proxy of the subsurface conditions and indication of expected fracture growth areas in the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bai, T., & Pollard, D. D. (2000). Fracture spacing in layered rocks: A new explanation based on the stress transition. Journal of Structural Geology, 22, 43–57.

    Article  Google Scholar 

  • Bai, T., Pollard, D. D., & Gao, H. (2000). Explanation for fracture spacing in layered materials. Nature, 403, 753–756.

    Article  Google Scholar 

  • Barr, D., Savory, K. E., Fowler, S. R., Arman, K., & McGarrity, J. P. (2007). Pre-development fracture modelling in the Clair field, west of Shetland. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 205–225). Geological Society, Special Publications.

    Google Scholar 

  • Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of conceptual models and discretization approaches. Transport in Porous Media, 130, 215–236.

    Article  Google Scholar 

  • Bowen, G., Stone, T. W., Bradley, D. C., & Morozov, N. (2013). Multisegment fractures. United States Patent Application, US2013/0124178 A1.

    Google Scholar 

  • Casabianca, D., Jolly, R. J. H., & Pollard, R. (2007). The machar oil field: Waterflooding a fractured chalk reservoir. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 171–191). Geological Society, Special Publications.

    Google Scholar 

  • Chemenda, A. I. (2022). Bed thickness-dependent fracturing and inter-bed coupling define the nonlinear fracture spacing-bed thickness relationship in layered rocks: Numerical modeling. Journal of Structural Geology, 165, 104741.

    Article  Google Scholar 

  • Dershowitz, B., LaPointe, P., Eiben, T., & Wei, L. (2000). Integration of discrete feature network methods with conventional simulator approaches. SPE49069, presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana.

    Google Scholar 

  • Descamps, F., Faÿ-Gomord, O., Vandycke, S., Schroeder, C., Swennen, R., & Tshibangu, J. P. (2017). Relationships between geomechanical properties and lithotypes in NW European chalks. In J. P. Turner, D. Healy, R. R. Hillis, & M. J. Welch (Eds.), Geomechanics and Geology (p. 458). Geological Society.

    Google Scholar 

  • Fabricius, I. L. (2007). Chalk: Composition, diagenesis and physical properties. Bulletin of the Geological Society of Denmark, 55, 97–128.

    Article  Google Scholar 

  • Fabricius, I. L. (2020). Porosity in chalk—Roles of elastic strain and plastic strain. Sedimentology, 67, 3451–3470.

    Article  Google Scholar 

  • Fabricius, I. L., Gommesen, L., Krogsbøll, A., & Olsen, D. (2008). Chalk porosity and sonic velocity versus burial depth: Influence of fluid pressure, hydrocarbons and mineralogy. AAPG Bulletin, 92, 201–223.

    Article  Google Scholar 

  • Faÿ-Gomord, O., Verbiest, M., Lasseur, E., Caline, B., Allanic, C., Descamps, F., Vandycke, S., & Swennen, R. (2018). Geological and mechanical study of argillaceous North Sea chalk: Implications for the characterisation of fractured reservoirs. Marine and Petroleum Geology, 92, 962–978.

    Article  Google Scholar 

  • Fonta, O., Al-Ajmi, H., Verma, N. K., & Matar, S. (2005). The fracture characterization and fracture modelling of a tight carbonate reservoir: The Najmah Sargelu of West Kuwait. SPE93557, presented at 14th SPE Middle East Oil and Gas Show and Conference, Bahrain.

    Google Scholar 

  • Garland, J., Neilson, J. E., Laubach, S. E., & Whidden, K. J. (Eds.). (2012). Advances in carbonate exploration and reservoir analysis. Geological Society, London, Special Publications, 370, 1–15.

    Google Scholar 

  • Glad, A. C., Amour, F., Welch, M. J., Clausen, O. R., Anderskouv, K., Ineson, J. R., Sheldon, E., & Nick, H. M. (2022). Natural fractures in a Lower Cretaceous chalk- marlstone reservoir, Valdemar Field, Danish North Sea. Marine and Petroleum Geology, 136, 105445.

    Article  Google Scholar 

  • Hansen, T. H., Clausen, O. R., & Andresen, K. J. (2021). Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea—The role of deep evaporites and basement kinematics. Solid Earth, 12, 1719–1747.

    Article  Google Scholar 

  • Ineson, J. R. (1993). The lower cretaceous chalk play in the Danish Central trough. In Geological Society, London, Petroleum Geology Conference Series (Vol. 4, Issue 1, pp. 175–183). The Geological Society of London.

    Google Scholar 

  • Ineson, J. R., Lauridsen, B., Lode, S., Sheldon, E., Sørensen, H. O., Wisshak, M., & Anderskouv, K. (2022a). A condensed chalk-marl succession on an Early Cretaceous intrabasinal structural high, Danish Central Graben: Implications for the sequence stratigraphic interpretation of the Munk Marl Bed. Sedimentary Geology, 440, 106234.

    Article  Google Scholar 

  • Ineson, J. R., Petersen, H. I., Andersen, C., Bjerager, M., Jakobsen, F. C., Kristensen, L., Mørk, F., & Sheldon, E. (2022b). Early Cretaceous stratigraphic and basinal evolution of the Danish Central Graben: A review. Bulletin of the Geological Society of Denmark, 71, 75–98.

    Article  Google Scholar 

  • Ineson, J. R., Sheldon, E., Dybkjaer, K., Andersen, C., Alsen, P., & Jakobsen, F. (2022c). The “Base Cretaceous Unocnformity” in a basin-centre setting, Danish Central Graben, North Sea: A cored record of resedimentation and condensation accompanying transgression and basinal overturn. Marine and Petroleum Geology, 137, 105489.

    Article  Google Scholar 

  • Jakobsen, F., Ineson, J. R., Kristensen, L., Nytoft, H. P., & Stemmerik, L. (2005). The Valdemar Field, Danish Central Graben: Field compartmentalization and regional prospectivity of the Lower Cretaceous chalk play. In A. G. Doré & B. A. Vinning (Eds.), Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference (pp. 177–186). The Geological Society of London.

    Google Scholar 

  • Jakobsen, F., Ineson, J. R., Kristensen, L., & Stemmerik, L. (2004). Characterization and zonation of a marly chalk reservoir: The Lower Cretaceous Valdemar Field of the Danish Central Graben. Petroleum Geoscience, 10, 1–12.

    Article  Google Scholar 

  • Jelby, M. E., Ineson, J. R., Thibault, N., Bodin, S., Blok, C. N., Edvardsen, N., Clemmensen, T. S., Buls, T., & Anderskouv, K. (2022). Facies and depositional processes of Lower Cretaceous carbonates, Danish Central Graben. Bulletin of the Geological Society of Denmark, 71, 51–74.

    Article  Google Scholar 

  • Jensen, T. F., & Buchardt, B. (1987). Sedimentology and geochemistry of the organic carbon-rich Lower Cretaceous Sola Formation (Baremian–Albian), Danish North Sea. In J. Brooks & K. Glennie (Eds.), Petroleum Geology of North West Europe (pp. 431–440). Graham & Trotman.

    Google Scholar 

  • Jensen, T. F., Holm, L., Frandsen, N., & Michelsen, O. (1986). Jurassic—Lower Cretaceous lithostratigraphic nomenclature for the Danish Central Trough. Danmarks Geologiske Undersøgelse, Serie A, 12, 64 pp.

    Google Scholar 

  • Laubach, S. E., Olson, J. E., & Gross, M. R. (2009). Mechanical and fracture stratigraphy. AAPG Bulletin, 93, 1413–1426.

    Article  Google Scholar 

  • Møller, J. J., & Rasmussen, E. S. (2003). Middle Jurassic—Early Cretaceous rifting of the Danish Central Graben. Geological Survey of Denmark and Greenland Bulletin, 1, 247–264.

    Article  Google Scholar 

  • Narr, W., Schechter, D. W., & Thompson, L. B. (2006). Naturally fractured reservoir characterization. Society of Petroleum Engineers.

    Google Scholar 

  • Nelson, R. A. (2001). Geological analysis of naturally fractured reservoirs. Gulf Professional Publishing.

    Google Scholar 

  • Pauly, S., Mutterlose, J., & Wray, D. S. (2013). Palaeoceanography of Lower Cretaceous (Barremian–Lower Aptian) black shales from northwest Germany evidenced by calcareous nannofossils and geochemistry. Cretaceous Research, 42, 28–43.

    Article  Google Scholar 

  • Rawnsley, K., De Kejzer, M., Wei, L., Bettembourg, S., Asyee, W., Massaferro, J.-L., Swaby, P., Drysdale, D., & Boettcher, D. (2007). Characterizing fracture and matrix heterogeneities in folded Devonian carbonate thrust sheets, Waterton tight gas fields, Western Canada. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 265–279). Geological Society, Special Publications.

    Google Scholar 

  • Rogers, S., Enachescu, C., Trice, R., & Buer, K. (2007). Integrating discrete fracture network models and pressure transient data for testing conceptual fracture models of the Valhall chalk reservoir, Norwegian North Sea. In L. Lonergan, R. J. H. Jolly, K. Rawnsley, & D. J. Sanderson (Eds.), Fractured reservoirs (Vol. 270, pp. 193–204). Geological Society, Special Publications.

    Google Scholar 

  • Souque, C., Knipe, R. J., Davies, R. K., Jones, P., Welch, M. J., & Lorenz, J. (2019). Fracture corridors and fault reactivation: Example from the Chalk, Isle of Thanet, Kent, England. Journal of Structural Geology, 122, 11–26. https://doi.org/10.1016/j.jsg.2018.12.004

    Article  Google Scholar 

  • Sun, S., & Pollitt, D. A. (2021). Optimising development and production of naturally fractured reservoirs using a large empirical dataset. Petroleum Geoscience 27(2), petgeo2020–079.

    Google Scholar 

  • Suo, C., Peng, S., Chang, S., Duan, R., & Wang, G. (2012). A new calculating method of the curvature to predicting the reservoir fractures. Procedia Environmental Sciences, 12, 576–582.

    Article  Google Scholar 

  • Surlyk, F., Dons, T., Clausen, C. K., & Higham, J. (2003). Upper cretaceous. In D. Evans, C. Graham, A. Armour, & P. Bathurst (Eds.), The millennium atlas: Petroleum geology of the central and northern North Sea. Geological Society.

    Google Scholar 

  • Van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. A., Trudgill, B., & Larsen, P. H. (2018). Tectonostratigraphic framework and depositional history of the Cretaceous-Danian succession of the Danish Central Graben (North Sea)-new light on a mature area. In Petroleum Geology Conference Proceedings (pp. 9–46). https://doi.org/10.1144/PGC8.24

  • Vejbæk, O. V. (1986). Seismic stratigraphy and tectonic evolution of the Lower Cretaceous in the Danish Central Trough. Danmarks Geologiske Undersøgelse, Serie A, 11, 57 pp.

    Google Scholar 

  • Vejbæk, O. V., & Andersen, C. (1987). Cretaceous-early tertiary inversion tectonism in the Danish Central Trough. Tectonophysics, 137, 221–238.

    Article  Google Scholar 

  • Vejbæk, O. V., & Andersen, C. (2002). Post mid-Cretaceous inversion tectonics in the Danish Central Graben. Bulletin of the Geological Society of Denmark, 49, 129–144.

    Article  Google Scholar 

  • Welch, M. J., Lüthje, M., & Glad, A. C. (2019). Influence of fracture nucleation and propagation rates on fracture geometry: Insights from geomechanical modelling. Petroleum Geoscience, 25, 470–489.

    Article  Google Scholar 

  • Welch, M. J., Lüthje, M., & Oldfield, S. J. (2020). Modelling the evolution of natural fracture networks: Methods for simulating the nucleation, propagation and interaction of layer-bound fractures (230 pp.). Springer.

    Google Scholar 

  • Welch, M. J. (2023). Using geomechanical models to simulate the growth of the fracture network in the Ekofisk Formation of the Kraka structure. Danish Central Graben, This volume.

    Google Scholar 

  • Ziegler, P. A. (1990). Collision related intra-plate compression deformations in Western and Central Europe. Journal of Geodynamics, 11(4), 357–388.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Danish Underground Consortium (DUC; TotalEnergies Denmark, Noreco and Nordsøfonden) for providing core data and granting the permission to publish this work. This research has received funding from the Danish Offshore Technology Centre (DOTC) under the Tight Reservoir Development (TRD) and Advanced Water Flooding (AWF) programmes. Jon R. Ineson (GEUS) and an anonymous reviewer are thanked for their thorough review of the manuscript which significantly improved the article. Mikael Lüthje is thanked for his constructive discussions and inputs to the manuscript in the early stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslaug C. Glad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glad, A.C., Welch, M.J., Oldfield, S.J., Nick, H.M., Jørgensen, T.M., Clausen, O.R. (2023). Geomechanical Modelling the Evolution of a Connected Natural Fracture Network to Explain Fluid Flow Variations Across a Fractured Chalk-Marl Reservoir. In: Welch, M.J., Lüthje, M. (eds) Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-35327-7_8

Download citation

Publish with us

Policies and ethics

Navigation