Artificial Intelligence Approaches to the Imaging of Neurodegenerative Diseases

  • Chapter
  • First Online:
Molecular Imaging of Neurodegenerative Disorders
  • 443 Accesses

Abstract

We are living in a time of rapid progress in artificial intelligence. Uses for medicine and more specifically neuroimaging are exploding across a broad horizon, ranging from image quality improvement to autonomous diagnosis of medical images. For neurodegenerative disease, there are a host of applications, from creating better upstream image data quality, cross-modality transformation to synthesize missing data, to classification of current and future biomarkers and disease states. In many cases, these applications will improve access to neuroimaging technology at reduced cost and risk. In this chapter, we will explore the existing literature, speculate on future use cases, and discuss the challenge of AI, including generalizability, bias, and explicability. Physicians, imaging physicists, biomedical engineers, and other domain experts must engage these new topics to best optimize AI that serves patients with neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaynak O. The golden age of artificial intelligence. Discov Artif Intell. 2021;1:1–7.

    Article  Google Scholar 

  2. Moore A. Carnegie Mellon dean of computer science on the future of AI. Forbes Magazine. Accessed 30 Oct 2017.

    Google Scholar 

  3. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, et al. Highly accurate protein structure prediction with Alphafold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gillies R, Kinahan P, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

    Article  PubMed  Google Scholar 

  5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  6. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep learning in neuroradiology. AJNR Am J Neuroradiol. 2018;39:1776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haggstrom I, Schmidtlein CR, Campanella G, Fuchs TJ. Deeppet: a deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fuchs V, Sox H Jr. Physicians views of the relative importance of thirty medical innovations. Health Aff. 2001;20:30–42.

    Article  CAS  Google Scholar 

  9. Edelstein WA, Mahesh M, Carrino JA. MRI: Time is dose—and money and versatility. J Am Coll Radiol. 2010;7:650–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.

    Article  PubMed  Google Scholar 

  11. Smith-Bindman R, Kwan ML, Marlow EC, Theis MK, Bolch W, Cheng SY, Bowles EJA, Duncan JR, Greenlee RT, Kushi LH, Pole JD, Rahm AK, Stout NK, Weinmann S, Miglioretti DL. Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. JAMA. 2019;322:843–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Krizhevsky A, Sutskever I, Hinton G. Image net classification with deep convolutional neural networks. In: Advances neural information processing systems. Cambridge: The MIT Press; 2012. p. 25.

    Google Scholar 

  13. Gong E, Pauly J, Zaharchuk G. Boosting SNR and/or resolution of arterial spin label (ASL) imaging using multi-contrast approaches with multi-lateral guided filter and deep networks, vol. 3938. Honolulu: Proceedings of ISMRM; 2017.

    Google Scholar 

  14. Mardani M, Gong E, Cheng J, Vasanawala S, Zaharchuk G, **ng L, Pauly J. Deep generative adversarial networks for compressed sensing MRI. IEEE Trans Med Imaging. 2019;38:167–79.

    Article  PubMed  Google Scholar 

  15. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055–71.

    Article  PubMed  Google Scholar 

  16. Chaudhari AS, Fang Z, Kogan F, Wood J, Stevens KJ, Gibbons EK, Lee JH, Gold GE, Hargreaves BA. Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med. 2018;80:2139–54.

    Article  PubMed  PubMed Central  Google Scholar 

  17. US FDA. Artificial intelligence and machine learning (AI/ML)-enabled medical devices, vol. 2022. White Oak: US FDA; 2021.

    Google Scholar 

  18. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487–92.

    Article  CAS  PubMed  Google Scholar 

  19. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for (18)F-FDG PET attenuation correction. EJNMMI Phys. 2018;5:24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology. 2018;286:676–84.

    Article  PubMed  Google Scholar 

  21. Bradshaw TJ, Zhao G, Jang H, Liu F, McMillan AB. Feasibility of deep learning-based PET/MR attenuation correction in the pelvis using only diagnostic MR images. Tomography. 2018;4:138–47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. Eur J Nucl Med Mol Imaging. 2019;46:2700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chaudhari AS, Mittra E, Davidzon GA, Gulaka P, Gandhi H, Brown A, Zhang T, Srinivas S, Gong E, Zaharchuk G, Jadvar H. Low-count whole-body PET with deep learning in a multicenter and externally validated study. NPJ Digit Med. 2021;4:127.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, Pauly JM, Srinivas S, Zaharchuk G. Ultra-low-dose (18)F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019;290:649–56.

    Article  PubMed  Google Scholar 

  25. Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh M, Holley D, Gandhi H, Halbert K, Boumis A, Kennedy G, Mormino E, Khalighi M, Zaharchuk G. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation. Eur J Nucl Med Mol Imaging. 2021;48:2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Theruvath AJ, Siedek F, Yerneni K, Muehe AM, Spunt SL, Pribnow A, Moseley M, Lu Y, Zhao Q, Gulaka P, Chaudhari A, Daldrup-Link HE. Validation of deep learning-based augmentation for reduced (18)F-FDG dose for PET/MRI in children and young adults with lymphoma. Radiol Artif Intell. 2021;3:e200232.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jans LBO, Chen M, Elewaut D, Van den Bosch F, Carron P, Jacques P, Wittoek R, Jaremko JL, Herregods N. MRI-based synthetic CT in the detection of structural lesions in patients with suspected sacroiliitis: comparison with MRI. Radiology. 2021;298:343–9.

    Article  PubMed  Google Scholar 

  28. Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, Xu Z. Unsupervised MR-to-CT synthesis using structure-constrained CycleGAN. IEEE Trans Med Imaging. 2020;39:4249–61.

    Article  PubMed  Google Scholar 

  29. Florkow MC, Zijlstra F, Willemsen K, Maspero M, van den Berg CAT, Kerkmeijer LGW, Castelein RM, Weinans H, Viergever MA, van Stralen M, Seevinck PR. Deep learning-based MR-to-CT synthesis: the influence of varying gradient echo-based MR images as input channels. Magn Reson Med. 2020;83:1429–41.

    Article  CAS  PubMed  Google Scholar 

  30. Eshraghi Boroojeni P, Chen Y, Commean PK, Eldeniz C, Skolnick GB, Merrill C, Patel KB, An H. Deep-learning synthesized pseudo-CT for MR high-resolution pediatric cranial bone imaging (MR-HIPCB). Magn Reson Med. 2022;88:2285–97.

    Article  CAS  PubMed  Google Scholar 

  31. Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting (15)O-water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab. 2019;40:2240–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ouyang J, Chen K, Zaharchuk G. Zero-dose PET reconstruction with missing input by U-net with attention modules. Proceedings 33rd conference on neural information processing systems (NeurIPS 2019). 2019.

    Google Scholar 

  33. Gao P, Shan W, Guo Y, Wang Y, Sun R, Cai J, Li H, Chan WS, Liu P, Yi L, Zhang S, Li W, Jiang T, He K, Wu Z. Development and validation of a deep learning model for brain tumor diagnosis and classification using magnetic resonance imaging. JAMA Netw Open. 2022;5:e2225608.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silva-Spinola A, Baldeiras I, Arrais JP, Santana I. The road to personalized medicine in Alzheimer's disease: the use of artificial intelligence. Biomedicine. 2022;10:10.

    Google Scholar 

  35. Battineni G, Chintalapudi N, Hossain MA, Losco G, Ruocco C, Sagaro GG, Traini E, Nittari G, Amenta F. Artificial intelligence models in the diagnosis of adult-onset dementia disorders: a review. Bioengineering (Basel). 2022;9:9.

    Google Scholar 

  36. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392:2388–96.

    Article  PubMed  Google Scholar 

  37. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, Moore GJ. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med. 2018;1:9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D. Early diagnosis of Alzheimer's disease with deep learning. Proceedings 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). Bei**g: IEEE; 2014. p. 1015–8.

    Google Scholar 

  39. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer's disease stage. Sci Rep. 2021;11:3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wada A, Tsuruta K, Irie R, Kamagata K, Maekawa T, Fujita S, Koshino S, Kumamaru K, Suzuki M, Nakanishi A, Hori M, Aoki S. Differentiating Alzheimer's disease from dementia with Lewy bodies using a deep learning technique based on structural brain connectivity. Magn Reson Med Sci. 2019;18:219–24.

    Article  PubMed  Google Scholar 

  41. Ni YC, Tseng FP, Pai MC, Hsiao IT, Lin KJ, Lin ZK, Lin CY, Chiu PY, Hung GU, Chang CC, Chang YT, Chuang KS. The feasibility of differentiating Lewy body dementia and Alzheimer's disease by deep learning using ECD SPECT images. Diagnostics. 2021;11:11.

    Article  Google Scholar 

  42. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, DeCarli CS, Turner RS, Koeppe RA, Higdon R, Minoshima S. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007;130:2616–35.

    Article  PubMed  Google Scholar 

  43. Sadeghi N, Foster N, Wang A, Minoshima S, Lieberman A, Tasdizen T. Automatic classification of Alzheimer's disease vs. frontotemporal dementia: a spatial decision tree approach with FDG-PET. In: Proceedings 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Paris: IEEE; 2008. p. 408–11.

    Google Scholar 

  44. Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer's disease. Front Neurosci. 2020;14:626154.

    Article  PubMed  Google Scholar 

  45. Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke. 2018;49:1394–401.

    Article  PubMed  Google Scholar 

  46. Yu Y, **e Y, Thamm T, Gong E, Ouyang J, Christensen S, Marks M, Lansberg M, Albers G, Zaharchuk G. Tissue at-risk and ischemic core estimation using deep learning in acute stroke. Am J Neuroradiol. 2021;42:1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C, Behr SC, Flavell RR, Huang SY, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology. 2019;290:456–64.

    Article  PubMed  Google Scholar 

  48. Reith FH, Mormino EC, Zaharchuk G. Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimers Dement. 2021;7:e12212.

    Article  Google Scholar 

  49. Reith F, Koran M, Davidzon G, Zaharchuk G. Application of deep learning to predict standardized uptake value ratio and amyloid status on 18F-florbetapir PET using ADNI data. Am J Neuroradiol. 2020;41:980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larson DB, Magnus DC, Lungren MP, Shah NH, Langlotz CP. Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology. 2020;295:675–82.

    Article  PubMed  Google Scholar 

  51. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Milchenko M, Xu W, Marcus D, Colen RR, Bakas S. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10:12598.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lauer M. Introducing NIH's new scientific data sharing website. https://nexus.od.nih.gov/all/2022/04/05/introducing-nihs-new-scientific-data-sharing-website/. Accessed 19 Sept 2022.

  53. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15:e1002683.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Panch T, Mattie H, Atun R. Artificial intelligence and algorithmic bias: implications for health systems. J Glob Health. 2019;9:010318.

    Article  PubMed  Google Scholar 

  55. Lee JS, Lee DS, Kim J, Kim YK, Kang E, Kang H, Kang KW, Lee JM, Kim JJ, Park HJ, Kwon JS, Kim SI, Yoo TW, Chang KH, Lee MC. Development of Korean standard brain templates. J Korean Med Sci. 2005;20:483–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Zaharchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaharchuk, G. (2023). Artificial Intelligence Approaches to the Imaging of Neurodegenerative Diseases. In: Cross, D.J., Mosci, K., Minoshima, S. (eds) Molecular Imaging of Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-35098-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35098-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35097-9

  • Online ISBN: 978-3-031-35098-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation