Bag of Tricks for Develo** Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity

  • Conference paper
  • First Online:
Mitosis Domain Generalization and Diabetic Retinopathy Analysis (MIDOG 2022, DRAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13597))

Abstract

Recently, diabetic retinopathy (DR) screening utilizing ultra-wide optical coherence tomography angiography (UW-OCTA) has been used in clinical practices to detect signs of early DR. However, develo** a deep learning-based DR analysis system using UW-OCTA images is not trivial due to the difficulty of data collection and the absence of public datasets. By realistic constraints, a model trained on small datasets may obtain sub-par performance. Therefore, to help ophthalmologists be less confused about models’ incorrect decisions, the models should be robust even in data scarcity settings. To address the above practical challenging, we present a comprehensive empirical study for DR analysis tasks, including lesion segmentation, image quality assessment, and DR grading. For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning. Furthermore, we propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model’s confidence scores to reduce the negative effect of noisy pseudo-labels. By exploiting the proposed approaches, we achieved 1st place in the Diabetic Retinopathy Analysis Challenge (Code is available at https://github.com/vuno/DRAC22_MICCAI_FAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, we only consider the classification task with a discrete label space.

  2. 2.

    https://drac22.grand-challenge.org/.

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE (2020)

    Google Scholar 

  2. Berthelot, D., et al.: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring. ar**v preprint ar**v:1911.09785 (2019)

  3. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information. 11(2) (2020). https://doi.org/10.3390/info11020125, https://www.mdpi.com/2078-2489/11/2/125

  4. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)

    Article  Google Scholar 

  5. Gao, Z., et al.: End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Graefes Arch. Clin. Exp. Ophthalmol. 260(5), 1663–1673 (2022)

    Article  Google Scholar 

  6. Ghazal, M., Ali, S.S., Mahmoud, A.H., Shalaby, A.M., El-Baz, A.: Accurate detection of non-proliferative diabetic retinopathy in optical coherence tomography images using convolutional neural networks. IEEE Access 8, 34387–34397 (2020)

    Article  Google Scholar 

  7. Gregori, N.Z.: Diabetic retinopathy: Causes, symptoms, treatment. Am. Acad. Ophthalmol. (2021)

    Google Scholar 

  8. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  9. Guo, Y., Camino, A., Wang, J., Huang, D., Hwang, T.S., Jia, Y.: Mednet, a neural network for automated detection of avascular area in oct angiography. Biomed. Opt. Express 9(11), 5147–5158 (2018)

    Article  Google Scholar 

  10. Heisler, M., et al.: Ensemble deep learning for diabetic retinopathy detection using optical coherence tomography angiography. Transl. Vision Sci. Technol. 9(2), 20–20 (2020)

    Article  Google Scholar 

  11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  13. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, R., et al.: Deepdrid: Diabetic retinopathy-grading and image quality estimation challenge. Patterns, p. 100512 (2022)

    Google Scholar 

  16. Liu, S., Qi, X., Shi, J., Zhang, H., Jia, J.: Multi-scale patch aggregation (MPA) for simultaneous detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3141–3149 (2016)

    Google Scholar 

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. ar**v preprint ar**v:1711.05101 (2017)

  18. Pan, X., et al.: Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Graefes Arch. Clin. Exp. Ophthalmol. 258(4), 779–785 (2020)

    Article  Google Scholar 

  19. Pham, H., Dai, Z., **e, Q., Le, Q.V.: Meta pseudo labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568 (2021)

    Google Scholar 

  20. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)

    Article  Google Scholar 

  21. Qummar, S., et al.: A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7, 150530–150539 (2019)

    Article  Google Scholar 

  22. Ruamviboonsuk, P., et al.: Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digital Med. 2(1), 1–9 (2019)

    Google Scholar 

  23. Ryu, G., Lee, K., Park, D., Park, S.H., Sagong, M.: A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Sci. Rep. 11(1), 1–9 (2021)

    Article  Google Scholar 

  24. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access 8, 151133–151149 (2020)

    Article  Google Scholar 

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  26. Sheng, B., et al.: An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Front. Public Health. 10 (2022)

    Google Scholar 

  27. Sheng, B., et al.: Diabetic retinopathy analysis challenge 2022, March 2022. https://doi.org/10.5281/zenodo.6362349

  28. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  29. Son, J., Park, S.J., Jung, K.H.: Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J. Digit. Imaging 32(3), 499–512 (2019)

    Article  Google Scholar 

  30. Son, J., Shin, J.Y., Kim, H.D., Jung, K.H., Park, K.H., Park, S.J.: Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology 127(1), 85–94 (2020)

    Article  Google Scholar 

  31. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  32. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  33. **, X., Meng, X., Qin, Z., Nie, X., Yin, Y., Chen, X.: IA-net: informative attention convolutional neural network for choroidal neovascularization segmentation in oct images. Biomed. Opt. Express 11(11), 6122–6136 (2020)

    Article  Google Scholar 

  34. **e, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  35. Zang, P., et al.: Dcardnet: diabetic retinopathy classification at multiple levels based on structural and angiographic optical coherence tomography. IEEE Trans. Biomed. Eng. 68(6), 1859–1870 (2020)

    Article  Google Scholar 

  36. Zhang, Q., Rezaei, K.A., Saraf, S.S., Chu, Z., Wang, F., Wang, R.K.: Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant. Imaging Med. Surg. 8(8), 743 (2018)

    Article  Google Scholar 

  37. Zhang, W., et al.: Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl. Based Syst. 175, 12–25 (2019)

    Article  Google Scholar 

  38. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwon, G., Kim, E., Kim, S., Bak, S., Kim, M., Kim, J. (2023). Bag of Tricks for Develo** Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity. In: Sheng, B., Aubreville, M. (eds) Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG DRAC 2022 2022. Lecture Notes in Computer Science, vol 13597. Springer, Cham. https://doi.org/10.1007/978-3-031-33658-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33658-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33657-7

  • Online ISBN: 978-3-031-33658-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation