Conventional Rare Earth Element Mineral Deposits—The Global Landscape

  • Chapter
  • First Online:
Rare Earth Metals and Minerals Industries
  • 477 Accesses

Abstract

Four conventional mineral deposit types—carbonatite, alkaline igneous, heavy mineral sand, and regolith-hosted ion-adsorption clay deposits—currently supply global markets with the rare earth elements (REEs) and rare earth oxides (REOs) necessary to meet the technological needs of global communities. The unique properties of REEs make them useful in a wide variety of applications, such as alloys, batteries, catalysts, magnets, phosphors, and polishing compounds. Rare earth element minerals are complex in both composition and structure. Carbonate, oxide, silicate, and phosphate-type minerals contain highly variable amounts of rare earths. Most rare earth-bearing minerals contain mainly lighter rare earths, a mixture of all the rare earths, or only the heavier rare earths.

Diverse technological applications require the full range of light, middle, and heavy rare earths. The production of these elements, in particular the heavy rare earths, remains highly dependent on deposits from China. Diversification of rare earth supply chains is contingent on expanded knowledge of globally distributed resources and an understanding of the degree to which those resources have been explored and evaluated. The knowledge of tectonic setting, typical rock associations, deposit morphology, and deposit genesis has led to the discovery of many conventional-type rare earth deposit types. Recent developments are anticipated to result in further discoveries that have the potential to meet the ever-expanding applications of REEs and REOs to address modern societal needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Union of Pure and Applied Chemistry, Periodic table of elements (2016). Accessed 17 Aug 2023, https://iupac.org/what-we-do/periodic-table-of-elements/

  2. S.R. Taylor, S.M. McLennan, The Continental Crust its Composition and Evolution (Blackwell, Oxford, 1985), pp. 1–312

    Google Scholar 

  3. K.R. Long, B.S. Van Gosen, N.K. Foley, D. Cordier, The principal rare earth elements deposits of the United States: A summary of domestic deposits and a global perspective, in Non-Renewable Resource Issues. International Year of Planet Earth, ed. by R. Sinding-Larsen, F.W. Wellmer, (Springer, Dordrecht, 2012). https://doi.org/10.1007/978-90-481-8679-2_7

    Chapter  Google Scholar 

  4. P. Henderson, The rare earth elements: Introduction and review, in Rare Earth Minerals: Chemistry, Origin, and Ore Deposits. The Mineralogical Society 7, ed. by A.P. Jones, W. Frances, C.T. Williams, (Chapman & Hall., 372 p, Chap. 1, 1996), pp. 1–17

    Google Scholar 

  5. A.P. Jones, F. Wall, C.T. Williams (eds.), Rare Earth Minerals-Chemistry, Origin and Ore Deposits. The Mineralogical Society, vol 7 (Chapman & Hall, 1996), 372p

    Google Scholar 

  6. A.R. Chakhmouradian, F. Wall, Rare earth elements: Minerals, mines, magnets (and more). Elements 8, 333–340 (2012). https://doi.org/10.2113/gselements.8.5.333

    Article  CAS  Google Scholar 

  7. Y. Ni, J.M. Hughes, A.N. Mariano, The atomic arrangement of Bastnasite-(Ce), Ce(C03)F, and structural elements of Synchysite-(Ce), Rontgenite-(Ce) and Parisite-(Ce). Am. Mineral. 78, 415–418 (1993)

    CAS  Google Scholar 

  8. A.N. Mariano, Nature of economic mineralization in carbonatites and related rocks, in Carbonatites — Genesis and Evolution, ed. by K. Bell, (Unwin Hyman, London, 1989), pp. 149–176

    Google Scholar 

  9. D. Sengupta, B.S. Van Gosen, Placer-type rare earth element deposits. Rev. Econ. Geol. 18, 81–100 (2016). https://doi.org/10.5382/Rev.18.04

    Article  Google Scholar 

  10. M.M. Zuman, S.M. Antoa, Crystal structure refinements of four monazite samples from different localities. Fortschr. Mineral. 10, 1028 (2020). https://doi.org/10.3390/min10111028

    Article  Google Scholar 

  11. R.H. Mitchell, M.D. Welch, A.R. Chakhmouradian, Nomenclature of the Perovskite Supergroup: A hierarchical system of classification based on crystal structure and composition. Mineral. Mag. 81(3), 411–461 (2017). https://doi.org/10.1180/minmag.2016.080.156

    Article  CAS  Google Scholar 

  12. E.A. Popova, S.G. Lushnikov, V.N. Yakovenchuk, S.V. Krivovichev, The crystal structure of Loparite: A new acentric variety. Miner. Petrol 111, 827–832 (2017). https://doi.org/10.1007/s00710-017-0498-y

    Article  CAS  Google Scholar 

  13. N.K. Foley, Rare earth elements in clays: A resource for the future? 16th international clay conference, Granada, Spain, 2017. https://www.scientevents.com/16icc/granada-2/

  14. Y. **e, Z. Hou, R.J. Goldfarb, X. Guo, L. Wang, Rare earth element deposits in China. Rev. Econ. Geol. 18, 115–136 (2016). https://doi.org/10.5382/Rev.18.0

    Article  Google Scholar 

  15. X. Liu, X. Lu, M. Sprik, J. Cheng, E.J. Meijer, R. Wang, Acidity of edge surface sites of Montmorillonite and Kaolinite. Geochim. Cosmochim. Acta 117, 180–190 (2013). https://doi.org/10.1016/j.gca.2013.04.008

    Article  CAS  Google Scholar 

  16. A.M. Borst, M.P. Smith, A.A. Finch, G. Estrade, C. Villanova-de-Benavent, P. Nason, E. Marquis, K.M. Goodenough, C. Xu, J. Kynický, K. Geraki, Adsorption of rare earth elements in Regolith-hosted clay deposits. Nat. Commun. 11, 4386 (2020). https://doi.org/10.1038/s41467-020-17801-5

    Article  CAS  Google Scholar 

  17. U.S. Geological Survey, Minerals yearbook rare earths [ADVANCED RELEASE] 2017: U.S. Geological Survey, 202 p., myb1–2017-raree.pdf (2020). https://doi.org/10.3133/mcs2022

  18. U.S. Geological Survey, Minerals yearbook rare earths [ADVANCED Date Release of the 2018 Annual Tables] 2017: U.S. Geological Survey, myb1–2018-raree-adv.xlsx (2021). https://doi.org/10.3133/mcs2022

  19. U.S. Geological Survey, Mineral commodity summaries 2022: U.S. Geological Survey, 202 p., (2022). https://doi.org/10.3133/mcs2022

  20. B.S. Van Gosen, P.L. Verplanck, R.R. Seal II, K.R. Long, J. Gambogi, Rare earth elements, in Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply: U.S. Geological Survey Professional Paper 1802, ed. by K.J. Schulz, J.H. DeYoung Jr., R.R. Seal II, D.C. Bradley, (2017), pp. O1–O31. https://doi.org/10.3133/pp1802O

    Chapter  Google Scholar 

  21. J. Kynicky, M.P. Smith, C. Xu, Diversity of rare earth deposits: The key example of China. Elements 8, 361–367 (2013). https://doi.org/10.2113/gselements.8.5.36

    Article  Google Scholar 

  22. C. Xu, L. Wang, W. Song, M. Wu, Carbonatites in China: A review of genesis and mineralization. Geosci. Front. 1, 105–114 (2010). https://doi.org/10.1016/j.gsf.2010.09.001

    Article  CAS  Google Scholar 

  23. S. Jaireth, D.M. Hoatson, Y. Miezitis, Geological setting and resources of the major rare-earth element deposits in Australia. Ore Geol. Rev. 62, 72–128 (2014). https://doi.org/10.1016/j.oregeorev.2014.02.008

    Article  Google Scholar 

  24. V.M. Levson, Marine placers, in Selected British Columbia Mineral Deposit Profiles, Volume 1 — Metallics and Coal, ed. by D.V. Lefebure, G.E. Ray, (British Columbia Ministry of Energy of Employment and Investment, Open File 1995–20, 1995), pp. 29–31

    Google Scholar 

  25. B.S. Van Gosen, D.L. Fey, A.K. Shah, P.L. Verplanck, T.M. Hoefen, Deposit model for heavy mineral sands in coastal environments. U.S. Geological Survey Scientific Investigations Report 2010–5070–L, 51 p (2014). https://doi.org/10.3133/sir20105070L

  26. V. Zaitsev, L. Kogarko, Sources and perspectives of REE in the Lovozero Massif (Kola Peninsula, Russia). European Mineralogical Conference 2012, Universität in Frankfurt, Germany EMC2012–290.pdf, 2012

    Google Scholar 

  27. K. Sanematsu, Y. Watanabe, Characteristics and genesis of ion adsorption-type rare earth element deposits. Rev. Econ. Geol. 18, 55–79 (2016). https://doi.org/10.5382/Rev.18.03

    Article  Google Scholar 

  28. Z. Bao, Z. Zhao, Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. OGR 33(3–4), 519–535 (2008). https://doi.org/10.1016/j.oregeorev.2007.03.005

    Article  Google Scholar 

  29. T. Cheisson, E.J. Schelter, Rare earth elements: Mendeleev's Bane, modern Marvels. Science 363(6426), 489–493 (2019). https://doi.org/10.1126/science.aau7628. Epub 2019 Jan 31 PMID: 30705185

    Article  CAS  Google Scholar 

  30. P. Cen, X. Bian, Z. Liu, M. Gu, W. Wu, B. Li, Extraction of rare earths from Bastnaesite concentrates: A critical review and perspective for the future. Miner. Eng. 171, 107081 (2021a). https://doi.org/10.1016/j.mineng.2021.107081

    Article  CAS  Google Scholar 

  31. P. Cen, X. Bian, W. Wu, B. Li, A sustainable green technology for separation and simultaneous recovery of rare earth elements and fluorine in Bastnaesite concentrates. Sep. Purif. Technol. 274, 118380., ISSN 1383-5866 (2021b). https://doi.org/10.1016/j.seppur.2021.118380

    Article  CAS  Google Scholar 

  32. L. Teixeira, R. Silva, D. Majuste, V. Ciminelli, Selective extraction of rare earth elements from Complex Monazite Ores. Proceedings of the first global conference on extractive metallurgy, 2018. https://doi.org/10.1007/978-3-319-95022-8_200

  33. D.A. Elatontsev, A.P. Mukhachev, Investigation of methods for separating thorium and rare earth elements in nitric-acid leaching solutions for Loparite concentrate. Atom. Energy 130, 82–87 (2021). https://doi.org/10.1007/s10512-021-00778-9

    Article  CAS  Google Scholar 

  34. G.A. Moldoveanu, V.G. Papangelakis, Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117–118, 71–78 (2012). https://doi.org/10.1016/j.hydromet.2012.02.007

    Article  CAS  Google Scholar 

  35. G.A. Moldoveanu, V.G. Papangelakis, Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy 131–132, 158–166 (2013a). https://doi.org/10.1016/j.hydromet.2012.10.011

    Article  CAS  Google Scholar 

  36. B. Ji, Q. Li, R. Honaker, W. Zhang, Acid leaching recovery and occurrence modes of rare earth elements (REEs) from natural Kaolinites. Miner. Eng. 175, 107278 (2022). https://doi.org/10.1016/j.mineng.2021.107278

    Article  CAS  Google Scholar 

  37. A. Hofstra, V. Lisitsin, L. Corriveau, S. Paradis, J. Peter, K. Lauzière, C. Lawley, M. Gadd, J.-L. Pilote, I. Honsberger, E. Bastrakov, D. Champion, K. Czarnota, M. Doublier, D. Huston, O. Raymond, S. VanDerWielen, P. Emsbo, M. Granitto, D. Kreiner, Deposit classification scheme for the critical minerals map** initiative global geochemical database. U.S. Geological Survey Open-File Report 2021–1049 60 p (2021). https://doi.org/10.3133/ofr20211049

  38. S. Sun, W.F. McDonough, Chemical and isotopic systematics of Oceanic Basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, ed. by A.D. Saunders, M.J. Norry, vol. 42, (Special Publication, Geological Society of London, 1989), pp. 313–345

    Google Scholar 

  39. A.R. Chakhmouradian, E.P. Reguir, A.N. Zaitsev, Calcite and Dolomite in intrusive carbonatites. I. Textural variations. Mineral. Petrol. 110, 333–360 (2016). https://doi.org/10.1007/s00710-015-0390-6

    Article  CAS  Google Scholar 

  40. G.J. Simandl, S. Paradis, Carbonatites: Related ore deposits, resources, footprint and exploration methods. Appl. Earth Sci. 127(4), 123–152 (2018). https://doi.org/10.1080/25726838.2018.1516935

    Article  CAS  Google Scholar 

  41. V.S. Kamenetsky, A.G. Doroshkevich, H.A.L. Elliott, A.N. Zaitsev, Carbonatites: Contrasting, complex and controversial. Elements 17, 307–314 (2021). https://doi.org/10.2138/gselements.17.5.307

    Article  CAS  Google Scholar 

  42. A. Woolley, B. Kjarsgaard, Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database. Canadian Mineralogist - CAN MINERALOG. 46, 741–752 (2008). https://doi.org/10.3749/canmin.46.4.741

    Article  CAS  Google Scholar 

  43. A.P. Jones, M. Genge, L. Carmody, Carbonate melts and carbonatites. Rev. Miner. Geochem 75, 289–322 (2013)

    Article  CAS  Google Scholar 

  44. A. Woolley, A. Kjarsgaard, Carbonatite occurrences of the world: Map and database. Geological Survey of Canada. Open File 5796, 2008, 28 pages; 1 CD-ROM (2008). https://doi.org/10.4095/225115

  45. M. Anenburg, S. Broom-Fendley, W. Chen, Formation of rare earth deposits in carbonatites. Elements 17, 327–332 (2022). https://doi.org/10.2138/gselements.17.5.327

    Article  CAS  Google Scholar 

  46. K.M. Goodenough, E.A. Deady, C.D. Beard, S. Broom-Fendley, H.A.L. Elliott, F. van den Berg, H. Öztürk, Carbonatites and alkaline igneous rocks in post-collisional settings: Storehouses of rare earth elements. J. Earth Sci. 32, 1332–1358 (2021). https://doi.org/10.1007/s12583-021-1500-5

    Article  CAS  Google Scholar 

  47. Z. Cheng, Z. Zhang, A. Aibai, W. Kong, F. Holtz, The role of magmatic and post-magmatic hydrothermal processes on rare earth element mineralization: A study of the Bachu Carbonatites from the Tarim Large Igneous Province, NW China. Lithos 314–315, 71–87 (2018). https://doi.org/10.1016/j.lithos.2018.05.023

    Article  CAS  Google Scholar 

  48. Z.-Y. Wang, H.-R. Fan, L. Zhou, K.-F. Yang, H.-D. She, Carbonatite-related REE deposits: An overview. Fortschr. Mineral. 10, 965 (2020). https://doi.org/10.3390/min10110965

    Article  CAS  Google Scholar 

  49. H.-D. She, H. Fan, K.-F. Yang, X.-C. Li, Z.-F. Yang, Q.-W. Wang, L.-F. Zhang, Z.-J. Wang, Complex, multi-stage mineralization processes in the Giant Bayan Obo REE-Nb-Fe deposit, China. Ore Geol. Rev. 139, 104461 (2021). https://doi.org/10.1016/j.oregeorev.2021.104461

    Article  Google Scholar 

  50. R.A. Ayuso, R. Tucker, S. Peters, N.K. Foley, J.A. Jackson, S. Robinson, M. Bove, Preliminary radiogenic isotope study on the origin of the Khanneshin Carbonatite Complex, Helmand Province, Afghanistan. J. Geochem. Explor. 133, 6–14 (2013). https://doi.org/10.1016/j.gexplo.2013.06.012

    Article  CAS  Google Scholar 

  51. R.D. Tucker, H.E. Belkin, K.J. Schulz, S.G. Peters, F. Horton, K. Kim Buttleman, E.R. Scott, A major Light Rare Earth Element (LREE) resources in the Khanneshin Carbonatite Complex, Southern Afghanistan. Econ. Geol. 107, 197–208 (2012). https://doi.org/10.2113/econgeo.107.2.197

    Article  CAS  Google Scholar 

  52. X.Y. Yang, X.D. Lai, F. Pirajno, Y.L. Liu, M.X. Ling, W.D. Sun, Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review. Precambrian Res. 288, 39–71 (2017). https://doi.org/10.1016/j.precamres.2016.11.008

    Article  CAS  Google Scholar 

  53. Molycorp, Inc., Molycorp’s rare earth reserves at mountain pass increase by 36%: Molycorp Press Release, April 9, 2012 (2012). Accessed 19 March 2019, at https://us1.campaign-archive.com/?u=a9e8676e87fad805702b98564&id=8bad5e9295&e=%5BUNIQID%5D

  54. J.E. Poletti, J.M. Cottle, G.A. Hagen-Peter, J.S. Lackey, Petrochronological constraints on the origin of the Mountain Pass Ultra-Potassic and Carbonatite Intrusive Suite, California. J. Petrol. 57, 1555–1598 (2016). https://doi.org/10.1093/petrology/egw05

    Article  CAS  Google Scholar 

  55. K.E. Watts, G.B. Haxel, D.M. Miller, Temporal and Petrogenetic links between Mesoproterozoic alkaline and carbonatite magmas at Mountain Pass, California. Econ. Geol. 117(1), 1–23 ISSN 0361-0128 (2022). https://doi.org/10.5382/econgeo.4848. 23 p

    Article  Google Scholar 

  56. J. Dostal, Rare metal deposits associated with alkaline/peralkaline igneous rocks, in Reviews in Economic Geology 18 — Rare Earth and Critical Elements in Ore Deposits, ed. by P. Verplanck, M. Hitzman, (Society of Economic Geologists, Inc., Littleton, 2016), pp. 33–54. https://doi.org/10.5382/Rev.18.02

    Chapter  Google Scholar 

  57. J. Dostal, Rare earth element deposits of alkaline igneous rocks. Resources 6(3), 34 (2017). https://doi.org/10.3390/resources6030034

    Article  Google Scholar 

  58. M.A.W. Marks, G. Markl, A global review on Agpaitic rocks. Earth Sci. Rev. 173, 229–258 (2017). https://doi.org/10.1016/j.earscirev.2017.06.0

    Article  CAS  Google Scholar 

  59. R.J. Robinson, M.A. Power, J.C. Barker, Technical report on the exploration Program and mineral resource estimate for the Bokan Mountain Property, Prince of Wales Island, Alaska. NI 43–101 Report, 190 p (2011) http://ucore.com/projects/bokan-mountain-alaska/43-101

  60. M. O’Driscoll, Rare earths — Enter the dragon. Ind. Miner 254, 21–55 (1988)

    Google Scholar 

  61. P.S. Roy, J. Whitehouse, Changing Pliocene Sea levels and formation of heavy Mineral Beach placers in the Murray Basin, Southeastern Australia. Econ. Geol. 98, 975–983 (2003). https://doi.org/10.2113/gsecongeo.98.5.975

    Article  CAS  Google Scholar 

  62. F. Wall, A. Rollat, R.S. Pell, Responsible sourcing of critical minerals. Elements 13, 313–318 (2017). https://doi.org/10.2138/gselements.13.5.313

    Article  CAS  Google Scholar 

  63. V. Raja, S.K. Sahoo, K. Sreekumar, M.A. Neelakantan, High background radiation places and spatial distribution of uranium in groundwater of monazite placer deposit in Kanniyakumari District, Tamil Nadu, India. J. Radioanal. Nucl. Chem. 328, 925–939 (2021). https://doi.org/10.1007/s10967-021-07727-7

    Article  CAS  Google Scholar 

  64. V. Vineethkumar, R. Akhil, K.P. Shimod, V. Prakash, Sources of monazite patches and dynamics of radionuclides concentration in the high background radiation areas of Kollam District, Kerala. J. Radioanal. Nucl. Chem. 327, 189–198 (2021). https://doi.org/10.1007/s10967-020-07520-y

    Article  CAS  Google Scholar 

  65. N. Van Dung, V.T.L. Anh, Radon, thoron gas concentration and level living in Ban Gie monazite mineral sand mine area, Quy Hop District, Nghe An Province, Vietnam, in Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020). MMMS 2020. Lecture Notes in Mechanical Engineering, ed. by B.T. Long, Y.H. Kim, K. Ishizaki, N.D. Toan, I.A. Parinov, N.P. Vu, (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-69610-8_83

    Chapter  Google Scholar 

  66. B.G. Lottermoser, Rare earth element mineralization within the Mt. Weld Carbonatite Laterite, Western Australia. Lithos 24, 151–167 (1990). https://doi.org/10.1016/0024-4937(90)90022-S

    Article  CAS  Google Scholar 

  67. I.A. Zhukova, A.S. Stepanov, S.-Y. Jiang, D. Murphy, J. Mavrogenes, C. Allen, W. Chen, R. Bottrill, Complex REE systematics of carbonatites and weathering products from Uniquely Rich Mount Weld REE Deposit, Western Australia. Ore Geol. Rev. 139, 539 (2021). https://doi.org/10.1016/j.oregeorev.2021.104539

    Article  Google Scholar 

  68. J. Tian, X.K. Tang, J.Q. Yin, X.P. Luo, G.H. Rao, M.T. Jiang, Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int. J. Miner. Process. 119, 83–88 (2013). https://doi.org/10.1016/j.minpro.2013.01.004

    Article  CAS  Google Scholar 

  69. F. Wall, Rare earth elements, in Critical Metals Handbook, ed. by G. Gunn, (Wiley, 2014), pp. 312–339. https://doi.org/10.1002/9781118755341.ch13

    Chapter  Google Scholar 

  70. N.K. Foley, R.A. Ayuso, REE enrichment in granite-derived Regolith Deposits of the Southeastern United States — Prospective source rocks and accumulation processes, in Symposium on Critical and Strategic Materials Proceedings. British Columbia Geological Survey Paper 2015–3, ed. by G. Simandl, M. Neetz, (2015), pp. 131–138. http://cmscontent.nrs.gov.bc.ca/geoscience/PublicationCatalogue/Paper/BCGS_P2015-03-16_Foley.pdf

    Google Scholar 

  71. S.M. McLennan, Rare earth element geochemistry and the “Tetrad” effect. Geochim. Cosmochim. Acta 58, 2025–2033 (1994). https://doi.org/10.1016/0016-7037(94)90282-8

    Article  CAS  Google Scholar 

  72. Z.H. Zhao, X. **ong, X.D. Han, Y. Wang, Q. Wang, Z.W. Bao, B.M. Jahn, Controls on the REE Tetrad Effect in Granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochem. J. 36, 527–543 (2002). https://doi.org/10.2343/geochemj.36.527

    Article  CAS  Google Scholar 

  73. N.K. Foley, R.A. Ayuso, Rare earth element mobility in High-Alumina Altered Metavolcanic Deposits, South Carolina, USA. J. Geochem. Explor. 133, 50–67 (2013). https://doi.org/10.1016/j.gexplo.2013.03.008

    Article  CAS  Google Scholar 

  74. C.R. Bern, T. Yesavage, N.K. Foley, Ion adsorption REEs in regolith of the Liberty Hill Pluton, South Carolina, USA: An effect of hydrothermal alteration. J. Geochem. Explor. 172, 29–40 (2017). https://doi.org/10.1016/j.gexplo.2016.09.009

    Article  CAS  Google Scholar 

  75. P. Černý, T.S. Ercit, The classification of granitic Pegmatites revisited. Can. Mineral. 43, 2005–2026 (2005). https://doi.org/10.2113/gscanmin.43.6.2005

    Article  Google Scholar 

  76. M.A. McKeough, D.R. Lentz, C.R.M. McFarlane, J. Brown, Geology and evolution of pegmatite-hosted U-Th ± REE-Y-Nb mineralization, Kulyk, Eagle, and Karin Lakes region, Wollaston Domain, Northern Saskatchewan, Canada: Examples of the dual role of extreme fractionation and hybridization processes. J. Geosci. 58(4), 321–346 (2013). https://doi.org/10.3190/jgeosci.153

    Article  CAS  Google Scholar 

  77. D.L. Huston, R. Maas, A. Cross, K.J. Hussey, T.P. Mernagh, G. Fraser, D.C. Champion, The Nolans Bore rare earth element-phosphorus-uranium mineral system — Geology, origin and post-depositional modifications. Mineral. Deposita 51(6), 797–822 (2016). https://doi.org/10.1007/s00126-015-0631-y

    Article  CAS  Google Scholar 

  78. W.C. Day, J.F. Slack, R.A. Ayuso, C.M. Seeger, Regional geologic and petrologic framework for iron oxide ± Apatite ± rare earth element and iron oxide copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, Southeast Missouri, USA. Econ. Geol. 111, 1825–1858 (2016). https://doi.org/10.2113/econgeo.111.8.1825

    Article  Google Scholar 

  79. J.N. Aleinikoff, D. Selby, J.F. Slack, W.C. Day, R.M. Pillers, M.A. Cosca, C.M. Seeger, C.M. Fanning, I.M. Samson, U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich Breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri. Econ. Geol. 111, 1883–1914 (2016). https://doi.org/10.2113/econgeo.111.8.1883

    Article  Google Scholar 

  80. R.A. Ayuso, J.F. Slack, W.C. Day, A.E. McCafferty, Geochemistry, Nd-Pb isotopes, and Pb-Pb ages of Mesoproterozoic Pea Ridge iron oxide-Apatite-rare earth element deposit, Southeast Missouri. Econ. Geol. 111, 1935–1962 (2016). https://doi.org/10.2113/econgeo.111.8.1935

    Article  Google Scholar 

  81. K.E. Watts, C.N. Mercer, Zircon-hosted melt inclusion record of silicic magmatism in the Mesoproterozoic St. Francois Mountains Terrane, Missouri: Origin of the Pea Ridge iron oxide-Apatite-rare earth element deposit and implications for regional crustal pathways of mineralization. Geochim. Cosmochim. Acta 272, 54–77 (2020). https://doi.org/10.1016/j.gca.2019.12.032

    Article  CAS  Google Scholar 

  82. C.N. Mercer, K.E. Watts, J. Gross, Apatite trace element geochemistry and cathodoluminescent textures — A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG Deposits, Southeastern Missouri Iron Metallogenic Province, USA. OGR 116, 103129 (2020). https://doi.org/10.1016/j.oregeorev.2019.103129

    Article  Google Scholar 

  83. P. Emsbo, P.I. McLaughlin, G.N. Breit, E.A. du Bray, A.E. Koenig, Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Res. 27, 776–785 (2015). https://doi.org/10.1016/j.gr.2014.10.008

    Article  CAS  Google Scholar 

  84. P. Embso, P.I. McLaughlin, E.A. du Bray, E.D. Anderson, T.R.A. Vandenbroucke, R.A. Zielinski, Rare earth elements in sedimentary phosphorite deposits: A global assessment. Rev. Econ. Geol. 18, 101–113 (2016). https://doi.org/10.5382/Rev.18.05

    Article  Google Scholar 

  85. R. Buccione, R. Kechiched, G. Mongelli, R. Sinisi, REEs in the North Africa P-Bearing Deposits, Paleoenvironments and economic perspectives: A review. Fortschr. Mineral. 11(2), 214 (2021). https://doi.org/10.3390/min11020214

    Article  CAS  Google Scholar 

  86. M. Valetich, D. Zivak, C. Spandler, H. Degeling, M. Grigorescu, REE enrichment of phosphorites: An example of the Cambrian Georgina Basin of Australia. Chem. Geol. 588, 120654 (2022). https://doi.org/10.1016/j.chemgeo.2021.120654

    Article  CAS  Google Scholar 

  87. S. Wu, L. Wang, L. Zhao, P. Zhang, H. El-Shall, B. Moudgil, X. Huang, L. Zhang, Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review. Chem. Eng. J. 335, 774–800 (2018). https://doi.org/10.1016/j.cej.2017.10.143

    Article  CAS  Google Scholar 

  88. A. Pourmand, N. Dauphas, T.J. Ireland, A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-Chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 291, 38–54 (2012). https://doi.org/10.1016/j.chemgeo.2011.08.011

    Article  CAS  Google Scholar 

  89. T. Nazari-Dehkordi, C. Spandler, N.H.S. Oliver, R. Wilson, Unconformity-related rare earth element deposits: A regional-scale hydrothermal mineralization type of Northern Australia. Econ. Geol. 113(6), 1297–1305 (2018). https://doi.org/10.5382/econgeo.2018.4592

    Article  Google Scholar 

  90. S. Costis, K.K. Mueller, L. Couder, M.N. Carmen, N. Reynier, J.-F. Blais, Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 221, 106699 (2020). https://doi.org/10.1016/j.gexplo.2020.106699

    Article  CAS  Google Scholar 

  91. S.A. Wood, The aqueous geochemistry of the rare earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990). https://doi.org/10.1016/0009-2541(90)90080-Q

    Article  CAS  Google Scholar 

  92. L.D. Meinert, G.M. Dipple, S. Nicolescu, World Skarn deposits, in Economic Geology — One Hundredth Anniversary v. 1905–2005, ed. by J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. Richards, (Society of Economic Geologists, Inc., Littleton, 2005), pp. 299–336

    Google Scholar 

  93. D. London, Rare Element Granitic Pegmatites, in Reviews in Economic Geology, volume 18 — Rare Earth and Critical Elements in Ore Deposits, (Society of Economic Geologists, Inc., Littleton, 2016), pp. 165–194. https://doi.org/10.5382/Rev.18.08

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora K. Foley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foley, N.K., Ayuso, R.A. (2024). Conventional Rare Earth Element Mineral Deposits—The Global Landscape. In: Murty, Y.V., Alvin, M.A., Lifton, J. (eds) Rare Earth Metals and Minerals Industries. Springer, Cham. https://doi.org/10.1007/978-3-031-31867-2_2

Download citation

Publish with us

Policies and ethics

Navigation