Part of the book series: UNITEXT ((UNITEXTMAT,volume 148))

  • 846 Accesses

Abstract

In order to properly address the issue of numerically solving any mathematical problem, it is always extremely important to understand as much as possible the problem itself. Hence, this chapter focuses on some basic issues on initial value problems for ordinary differential equations and, in particular, on the well-posedness of the problem and the stability of solutions. Some aspects regarding specific classes of problems, like discontinuous ODEs, dissipative problems and Hamiltonian problems are also addressed. Of course, this chapter does not pursue the aim of being a comprehensive treatise on the theory of ODEs; rather, the results here presented are clearly meant to provide significant issues relevant for computational purposes.

In order to solve this differential equation you look at it until a solution occurs to you.

(George Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton University Press, 1945)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Springer, Berlin (2008)

    Google Scholar 

  2. Alexander, J.C., Seidman, T.I.: Sliding modes in intersecting switching surfaces, I: Blending. Houston J. Math. 24(3), 545–569 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Alexander, J.C., Seidman, T.I.: Sliding modes in intersecting switching surfaces, II: Hysteresis. Houston J. Math. 25(1), 185–211 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Almeidal, A.R.M., Amado, I.F., Reynolds, J., Berges, J., Lythe, G., Molina-Paris, C., Freitas, A.A.: Quorum-sensing in CD4+ T-cell homeostasis: a hypothesis and a model. Front. Imm. 3, art. no. 125 (2012)

    Google Scholar 

  5. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1973)

    Google Scholar 

  6. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Wiley, New York (1978)

    MATH  Google Scholar 

  7. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2012)

    Book  MATH  Google Scholar 

  8. Brauer, F., Kribs, C.: Dynamical Systems for Biological Modeling: An Introduction. Chapman and Hall/CRC, New York (2015)

    Book  MATH  Google Scholar 

  9. Brauer, F., van de Driessche, P., Wu, J.: Mathematical Epidemiology. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Calvo, M., Montijano, J.I., Randez, L.: Algorithm 968: Disode45: a Matlab Runge-Kutta solver for piecewise smooth IVPs of Filippov type. ACM Trans. Math. Soft. 43(3), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannon, W.: The Wisdom of the Body. Norton, New York (1932)

    Book  Google Scholar 

  12. Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Chicone, C.: Stability theory of ordinary differential equations. In: Meyers, R. (eds.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    Google Scholar 

  14. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  15. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D.C. Heath, Boston (1965)

    MATH  Google Scholar 

  16. Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629. Springer, New York (1978)

    Google Scholar 

  17. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Doctoral thesis, Almqvist & Wiksells, Uppsala (1958); Transactions of the Royal Institute of Technology, Stockholm (1959)

    Google Scholar 

  18. D’Ambrosio, R., Giordano, G., Mottola, S., Paternoster, B.: Stiffness analysis to predict the spread out of fake news. Future Internet 13, 222 (2021)

    Article  Google Scholar 

  19. Dekker, K., Verwer, J.G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, vol. 2. North-Holland Publishing, Amsterdam (1984)

    Google Scholar 

  20. Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems. Theory and Applications. Springer, Berlin (2008)

    Google Scholar 

  21. Dieci, L., Difonzo, F.: A comparison of Filippov sliding vector fields in codimension 2. J. Comput. Appl. Math. 262, 161–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dieci, L., Elia, C.: Periodic orbits for planar piecewise smooth dynamical systems with a line of discontinuity. J. Dyn. Differ. Equ. 26(4), 1049–1078 (2014)

    Article  MATH  Google Scholar 

  23. Dieci, L., Lopez, L.: Sliding motion in Filippov differential systems: theoretical results and a computational approach. SIAM J. Numer. Anal. 47(3), 2023–2051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dieci, L., Lopez, L.: Sliding motion on discontinuity surfaces of high co-dimension. A general construction for selecting a Filippov vector field. Numer. Math. 117(4), 779–811 (2011)

    MATH  Google Scholar 

  25. Dieci, L., Lopez, L.: A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side. J. Comput. Appl. Math. 236, 3967–3991 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dieci, L., Elia, C., Lopez, L.: A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis. J. Differ. Equ. 254, 1800–1832 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dieci, L., Elia, C., Lopez, L.: Sharp sufficient attractivity conditions for sliding on a codimension 2 discontinuity surface. Math. Comput. Simul. 110, 3–14 (2015)

    Article  MATH  Google Scholar 

  28. Dieci, L., Elia, C., Lopez, L.: Uniqueness of Filippov sliding vector field on the intersection of two surfaces in \(\mathbb {R}^3\) and implications for stability of periodic orbits. J. Nonlinear Sci. 25, 1453–1471 (2015)

    Google Scholar 

  29. Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2012)

    Book  MATH  Google Scholar 

  30. Epstein, J.M.: Nonlinear Dynamics, Mathematical Biology, and Social Science. CRC Press, Boca Raton (2018)

    Book  MATH  Google Scholar 

  31. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Applications. Kluwer Academic, Dordrecht (1988)

    Google Scholar 

  32. Franceschi, J., Pareschi, L.: Spreading of fake news, competence and learning: kinetic modelling and numerical approximation. Phil. Trans. R. Soc. A. 380, 20210159 (2022)

    Article  MathSciNet  Google Scholar 

  33. Grindrod, P., Higham, D.J.: A dynamical systems view of network centrality. Proc. R. Soc. A 470, 20130835 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grönwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2), 292–296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guglielmi, N., Hairer, E.: Classification of hidden dynamics in discontinuous dynamical systems. SIAM J. Appl. Dyn. Syst. 14(3), 1454–1477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Guglielmi, N., Hairer, E.: Classification of hidden dynamics in discontinuous dynamical systems. SIAM J. Appl. Dyn. Syst. 14(3), 1454–1477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Guglielmi, N., Hairer, E.: Solutions leaving a codimension-2 sliding. Nonlinear Dyn. 88(2), 1427–1439 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guglielmi, N., Hairer, E.: An efficient algorithm for solving piecewise-smooth dynamical systems. Numer. Algorithms 89, 1311–1334 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Halanay, A.: Differential Equations. Stability, Oscillations, Time Lags. Academic, New York (1966)

    Google Scholar 

  40. Halanay, A., Lefschetz, S.: Differential Equations: Geometric Theory. Interscience, New York (1957)

    MATH  Google Scholar 

  41. Hartman, P.: Ordinary Differential Equations, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  42. Hénon, M., Heiles, C.: Title: the applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  Google Scholar 

  43. Higham, N.: Functions of Matrices. Theory and Computation. SIAM, Philadelphia (2008)

    Google Scholar 

  44. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  45. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken, NJ (2009)

    Book  MATH  Google Scholar 

  46. Jeffrey, M.D.: Hidden dynamics in models of discontinuity and switching. Physica D 274, 34–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jeffrey, M.D.: Dynamics at a switching intersection: hierarchy, isonomy, and multiple sliding. SIAM J. Appl. Dyn. Syst. 13(3), 1082–1105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. P. R. Soc. Lond. A-Conta 115(772), 700–721 (1927)

    Article  MATH  Google Scholar 

  49. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)

    Book  MATH  Google Scholar 

  50. Lindelöf, E.: Sur l’application de la méthode des approximations successives aux équations différentielles ordinaires du premier ordre. C. R. Hebd. Séances Acad. Sci. 118, 454–457 (1894)

    MATH  Google Scholar 

  51. Lozinskii, S.M.: Error estimates for the numerical integration of ordinary differential equations, part I. Izv. Vyss. Uceb. Zaved Matematika 6, 52–90 (1958)

    MATH  Google Scholar 

  52. Mahmoud, H.: A model for the spreading of fake news. J. Appl. Probab. 57(1), 332–342 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mantzaris, A.V., Higham, D.J.: A model for dynamic communicators. Eur. J. Appl. Math. 23, 659–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Murayama, T., Wakamiya, S., Aramaki, E., Kobayashi, R.: Modeling the spread of fake news on Twitter. PLoS ONE 16(4), e0250419 (2021)

    Article  Google Scholar 

  55. Peano, G.: Sull’integrabilità delle equazioni differenziali del primo ordine. Atti Accad. Sci. Torino 21, 437–445 (1886)

    Google Scholar 

  56. Peano, G.: Démonstration de l’intégrabilité des équations différentielles ordinaires. Math. Ann. 37(2), 182–228 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  57. Perko, L.: Differential Equations and Dynamical Systems, 2nd edn. Springer, New York (1996)

    Book  MATH  Google Scholar 

  58. Picard, E.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. J. Math. Pures Appl. 6, 145–210 (1890)

    MATH  Google Scholar 

  59. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (2015)

    MATH  Google Scholar 

  60. Söderlind, G.: The logarithmic norm. History and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)

    Article  MATH  Google Scholar 

  61. Soroush, V., Deb, R., Sinan, A.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Ambrosio, R. (2023). Ordinary Differential Equations. In: Numerical Approximation of Ordinary Differential Problems . UNITEXT(), vol 148. Springer, Cham. https://doi.org/10.1007/978-3-031-31343-1_1

Download citation

Publish with us

Policies and ethics

Navigation