Performance and Scalability Analysis of AI-Accelerated CFD Simulations Across Various Computing Platforms

  • Conference paper
  • First Online:
Euro-Par 2022: Parallel Processing Workshops (Euro-Par 2022)

Abstract

In this paper, we perform an extensive benchmarking and analysis of the performance and scalability of our software tool called CFD suite, which implements the AI-based domain-specific method for accelerating CFD (computation fluid dynamic) simulations proposed by us recently. By exploring various computing platforms containing both CPUs and GPUs, this analysis helps select suitable platforms for training and inference stages across heterogeneous execution environments. We propose and investigate two modes of utilizing the proposed decomposition of the AI model at the inference stage – either by calling each sub-model one by one (on GPUs) with reduced memory requirements or by performing pipeline predictions (on CPUs with large RAM) to improve the overall performance. It is shown that for the whole inference stage (including overheads), due to the pipeline execution and excluding overheads for data transfers through PCIe, the speedup provided by two Intel Xeon Gold CPUs (Skylake) is 2.4 times higher than for V100 GPU.

The authors are grateful to the byteLAKE company for their substantive support. The project financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19 the amount of financing 12,000,000 PLN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archibald, R., et al.: Integrating deep learning in domain sciences at exascale. ar**v preprint ar**v:2011.11188v1 (2020)

  2. BEM overview, September 2022. https://kdm.wcss.pl/wiki/Bem_overview

  3. Bhatt, D., Zhang, B.W., Zuckerman, D.M.: Steady-state simulations using weighted ensemble path sampling. J. Chem. Phys. 133(1), 014110 (2010)

    Article  Google Scholar 

  4. Chen, D., Hu, F., Nian, G., Yang, T.: Deep residual learning for nonlinear regression. Entropy 22(2), 193 (2020)

    Article  MathSciNet  Google Scholar 

  5. Paul, E.L., Atiemo-Obeng, V., Kresta, S.M. (eds.): Wiley, Hoboken (2004)

    Google Scholar 

  6. Horovod: Home, May 2022. https://horovod.ai/

  7. Kim, B., et al.: Deep fluids: a generative network for parameterized fluid simulations. ar**v preprint ar**v:1806.02071v2 (2019)

  8. Maulik, R., Sharma, H., Patel, S., Lusch, B., Jennings, E.: Accelerating RANS turbulence modeling using potential flow and machine learning. ar**v preprint ar**v:1910.10878 (2019)

  9. Mattson, P., et al.: MLPerf training benchmark. ar**v preprint ar**v:1910.01500v3 (2020)

  10. MixIT: the enterprise mixing analysis tool. https://mixing-solution.com/

  11. MLPerf Benchmarks, April 2022. https://www.nvidia.com/en-us/data-center/resources/mlperf-benchmarks/

  12. Mostafazadeh, B., et al.: Unsteady Navier-Stokes computations on GPU architectures. In: 23rd AIAA Computational Fluid Dynamics Conference (2017)

    Google Scholar 

  13. Obiols-Sales, O., Vishnu, A., Malaya, N., Chandramowlishwaran, A.: CFDNet: a deep learning-based accelerator for fluid simulations. In: Proceedings of the 34th ACM International Conference on Supercomputing (ICS 2020), pp. 1–12. ACM (2020)

    Google Scholar 

  14. OpenFOAM: the open source CFD toolbox, May 2022. https://www.openfoam.com

  15. The Performance of MLPerf as a Ubiquitous Benchmark is Lacking, 8 April 2022. https://www.nextplatform.com/2022/04/08/the-performance-of-mlperf-as-a-ubiquitous-benchmark-is-lacking

  16. Reddi, V.J., et al.: MLPerf inference benchmark. ar**v preprint ar**v:1911.02549v2 (2020)

  17. Rojek, K., et al.: Adaptation of fluid model EULAG to graphics processing unit architecture. Concurr. Comput. Pract. Exp. 27(4), 937–957 (2015)

    Article  Google Scholar 

  18. OpenVINO, May 2022. https://docs.openvino.ai

  19. Rojek, K., Halbiniak, K., Kuczynski, L.: CFD code adaptation to the FPGA architecture. Int. J. High Perform. Comput. Appl. 35(1), 33–46 (2021)

    Article  Google Scholar 

  20. Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12743, pp. 373–385. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77964-1_29

    Chapter  Google Scholar 

  21. Sadrehaghighi, I.: Basics of Computer Architecture as Relates to CFD, January 2022. https://www.researchgate.net/publication/339212886

  22. Sadrehaghighi, I.: Artificial Intelligence (AI) and Deep Learning for CFD, January 2022. https://www.researchgate.net/publication/339795951

  23. Sanchez-Gonzalez, A., et al.: Learning to simulate complex physics with graph networks. ar**v preprint ar**v:3394.45567 (2020)

  24. Szustak, L., et al.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Program. (2015). https://doi.org/10.1155/2015/642705

  25. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.H.: Accelerating eulerian fluid simulation with convolutional networks. In: ICML 2017: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3424–3433 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojek, K., Wyrzykowski, R. (2023). Performance and Scalability Analysis of AI-Accelerated CFD Simulations Across Various Computing Platforms. In: Singer, J., Elkhatib, Y., Blanco Heras, D., Diehl, P., Brown, N., Ilic, A. (eds) Euro-Par 2022: Parallel Processing Workshops. Euro-Par 2022. Lecture Notes in Computer Science, vol 13835. Springer, Cham. https://doi.org/10.1007/978-3-031-31209-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31209-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31208-3

  • Online ISBN: 978-3-031-31209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation