A Distributed Multi-key Generation Protocol with a New Complaint Management Strategy

  • Conference paper
  • First Online:
Information Systems (EMCIS 2022)

Abstract

Privacy protection is a main goal in the majority of the Blockchain studies. However some dishonest users may abuse from the benefits of this property and the fact of not being identified to do illegal crimes. That is why several researches focus on implementing identity tracing to avoid the flaws related to privacy protection in Blockchain applications.

In this paper, we propose a Distributed Multi-Key Generation (DMKG) protocol without private channels built on the DMKG protocol of the Blockchain Traceable Scheme with Oversight Function (BTSOF) presented in [8].

Our protocol introduces a new strategy to manage complaints between participants that avoids them to publicly reveal the values of their shares of secrets. This new management of complaints and the use of public channels allow a precise identification of malicious participants. We prove that our solution satisfies the security requirements of the Verifiable Multi-Secret Sharing (VMSS) schemes and DMKG protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswas, A.K., Dasgupta, M., Ray, S., Khan, M.K.: A probable cheating-free (t, n) threshold secret sharing scheme with enhanced blockchain. Comput. Electr. Eng. 100, 107925 (2022)

    Article  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society (1979)

    Google Scholar 

  3. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7

    Chapter  Google Scholar 

  4. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  5. Franklin, M., Yung, M.: Communication complexity of secure computation. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 699–710 (1992)

    Google Scholar 

  6. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21

    Chapter  Google Scholar 

  7. Kiamari, N., Hadian, M., Mashhadi, S.: Non-interactive verifiable LWE-based multi secret sharing scheme. Multimedia Tools Appl. pp. 1–13 (2022). https://doi.org/10.1007/s11042-022-13347-4

  8. Ma, T., Xu, H., Li, P.: A blockchain traceable scheme with oversight function. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 164–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_10

    Chapter  Google Scholar 

  9. Ma, T., Xu, H., Li, P.: Skyeye: a traceable scheme for blockchain. Cryptology ePrint Archive (2020)

    Google Scholar 

  10. Ma, T., Xu, H., Li, P.: A traceable scheme for consortium blockchain. In: 2021 IEEE 9th International Conference on Smart City and Informatization (ISCI), pp. 39–46. IEEE (2021)

    Google Scholar 

  11. Neji, W., Blibech, K., Ben Rajeb, N.: Distributed key generation protocol with a new complaint management strategy. Secur. Commun. Netw. 9(17), 4585–4595 (2016)

    Article  Google Scholar 

  12. Pakniat, N., Noroozi, M., Eslami, Z.: Distributed key generation protocol with hierarchical threshold access structure. IET Inf. Secur. 9(4), 248–255 (2015)

    Article  Google Scholar 

  13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  14. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  15. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Distributed key generation with ethereum smart contracts. In: CIW’19: Cryptocurrency Implementers’ Workshop (2019)

    Google Scholar 

  16. Shalini, I., Sathyanarayana, S., et al.: A comparative analysis of secret sharing schemes with special reference to e-commerce applications. In: 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), pp. 17–22. IEEE (2015)

    Google Scholar 

  17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shil, A.B., Blibech, K., Robbana, R., Neji, W.: A new pvss scheme with a simple encryption function. ar**v preprint ar**v:1307.8209 (2013)

  19. Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t, n) multi-secret sharing scheme. Appl. Math. Comput. 151(2), 483–490 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Zhou, X.: Threshold cryptosystem based fair off-line e-cash. In: 2008 2nd International Symposium on Intelligent Information Technology Application, vol. 3, pp. 692–696. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Kalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalai, R., Neji, W., Ben Rajeb, N. (2023). A Distributed Multi-key Generation Protocol with a New Complaint Management Strategy. In: Papadaki, M., Rupino da Cunha, P., Themistocleous, M., Christodoulou, K. (eds) Information Systems. EMCIS 2022. Lecture Notes in Business Information Processing, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-30694-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30694-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30693-8

  • Online ISBN: 978-3-031-30694-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation