Animals in Research in the Pharmaceutical Industry

  • Chapter
  • First Online:
Handbook of Bioethical Decisions. Volume I

Part of the book series: Collaborative Bioethics ((CB,volume 2))

  • 684 Accesses

Abstract

Since early Greek times, animals have provided knowledge critical to understanding human anatomy, physiology, disease injuries, development of medicines, vaccines, diagnostics and much more. The questions asked and the experiments designed have changed over time; most dramatically with increased genetic and immunologic insights of the past 20 years. In research within the pharmaceutical industry animals have been important in the discovery of new medicines and treatments. In animal models, new modalities are studies for their ability to turn on or off a receptor, to understand target and off target effects, induce mechanisms of actions and other investigative questions, tied to clinical questions and trial design. Recently the translatability between preclinical (animal) and clinical (human) studies have been questioned. This paper will review why animal models are important in drug discovery using select pharmacologic models, a brief review of the importance of animals and the brutality and outcomes of vivisection, and the problems of translation and bioethical questions about the use of animals in drug research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, B., & Larson, J. (2016). Legislative history of the animal welfare act: Introduction.

    Google Scholar 

  • Alter, H. J., Houghton, M., & Rice, C. M. (2020). Hepatitis C virus: Discovery to future prospects. Current Science, 119(10), 1606.

    Google Scholar 

  • Avila, A. M., Bebenek, I., Bonzo, J. A., Bourcier, T., Bruno, K. L. D., Carlson, D. B., et al. (2020). An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regulatory Toxicology and Pharmacology, 114, 104662.

    Article  Google Scholar 

  • Baptista, C. V. J., Faustino-Rocha, A. I., & Oliveira, P. A. (2021). Animal models in pharmacology: A brief history awarding the nobel prizes for physiology or medicine. Pharmacology, 106(7–8), 356–368.

    Article  Google Scholar 

  • Barefield, D. Y. (2017). It takes a village to train a scientist. American Heart Association.

    Book  Google Scholar 

  • Bates, D. G. (1992). Harvey’s account of his “discovery”. Medical History, 36(4), 361–378.

    Article  Google Scholar 

  • Bates, A. (2014). Vivisection, virtue ethics, and the law in 19th-century Britain. Journal of Animal Ethics, 4(2), 30–44.

    Article  Google Scholar 

  • Bates, A. (2017). Anti-vivisection and the profession of medicine in Britain: A social history. Springer Nature.

    Book  Google Scholar 

  • Beauchamp, T. & DeGrazia, D. (2020). Principles of Animal Research. Oxford University Press.

    Google Scholar 

  • Beekman, F. (1936). Studies in aneurysm by William and John Hunter. Annals of Medical History, 8(2), 124.

    Google Scholar 

  • Bruers, S. (2015). The core argument for veganism. Philosophia, 43(2), 271–290.

    Article  Google Scholar 

  • Chateau-Joubert, S., Hopfe, M., Richon, S., Decaudin, D., Roman-Roman, S., Reyes-Gomez, E., et al. (2021). Spontaneous mouse lymphoma in patient-derived tumor xenografts: The importance of systematic analysis of xenografted human tumor tissues in preclinical efficacy trials. Translational Oncology, 14(8), 101133.

    Article  Google Scholar 

  • Chaudhary, K., Chattopadhyay, A., & Pratap, D. (2018). The evolution of CRISPR/Cas9 and their cousins: Hope or hype? Biotechnology Letters, 40(3), 465–477.

    Article  Google Scholar 

  • Clark, J. M. (2018). The 3Rs in research: A contemporary approach to replacement, reduction and refinement. British Journal of Nutrition, 120(s1), S1–S7.

    Article  Google Scholar 

  • Crabbe, J. C. (2016). Reproducibility of experiments with laboratory animals: What should we do now? Alcoholism: Clinical and Experimental Research, 40(11), 2305–2308.

    Article  Google Scholar 

  • Denayer, T., Stöhr, T., & Van Roy, M. (2014). Animal models in translational medicine: Validation and prediction. New Horizons in Translational Medicine, 2(1), 5–11.

    Google Scholar 

  • Dunn, D. A., Pinkert, C. A., & Kooyman, D. L. (2005). Foundation review: Transgenic animals and their impact on the drug discovery industry. Drug Discovery Today, 10(11), 757–767.

    Article  Google Scholar 

  • Ericsson, A. C., Crim, M. J., & Franklin, C. L. (2013). A brief history of animal modeling. Missouri Medicine, 110(3), 201.

    Google Scholar 

  • Everitt, J., & Berridge, B. (2017). The role of the IACUC in the design and conduct of animal experiments that contribute to translational success. ILAR Journal, 58(1), 129–134.

    Article  Google Scholar 

  • Feinberg, J. (2017). Human duties and animal rights (pp. 399–423). Routledge.

    Book  Google Scholar 

  • Ferreira, G. S., Veening-Griffioen, D. H., Boon, W. P., Moors, E. H., & van Meer, P. J. (2020). Levelling the translational gap for animal to human efficacy data. Animals, 10(7), 1199.

    Article  Google Scholar 

  • Festing, M. F. (2020). The “completely randomised” and the “randomised block” are the only experimental designs suitable for widespread use in pre-clinical research. Scientific Reports, 10(1), 1–5.

    Article  Google Scholar 

  • Finn, M. A., & Stark, J. F. (2015). Medical science and the cruelty to animals act 1876: A re-examination of anti-vivisectionism in provincial Britain. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 49, 12–23.

    Article  Google Scholar 

  • Finsen, L., & Finsen, S. (1994). The animal rights movement in America: From compassion to respect. Social movements past and present (USA). Twayne Publishers.

    Google Scholar 

  • Franco, N. H. (2013). Animal experiments in biomedical research: A historical perspective. Animals, 3(1), 238–273.

    Article  Google Scholar 

  • Frommlet, F. (2020). Improving reproducibility in animal research. Nature Publishing Group.

    Book  Google Scholar 

  • Gettayacamin, M., & Retnam, L. (2017). AAALAC international standards and accreditation process. Toxicological Research, 33(3), 183–189.

    Article  Google Scholar 

  • Glatigny, S., & Bettelli, E. (2018). Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harbor Perspectives in Medicine, 8(11), a028977.

    Article  Google Scholar 

  • Gregory, N. S., Harris, A. L., Robinson, C. R., Dougherty, P. M., Fuchs, P. N., & Sluka, K. A. (2013). An overview of animal models of pain: Disease models and outcome measures. The Journal of Pain, 14(11), 1255–1269.

    Article  Google Scholar 

  • Griffin, G., & Locke, P. (2016). Comparison of the Canadian and US laws, regulations, policies, and systems of oversight for animals in research. ILAR Journal, 57(3), 271–284.

    Article  Google Scholar 

  • Grimm, H., Olsson, I. A. S., & Sandøe, P. (2019). Harm–benefit analysis–what is the added value? A review of alternative strategies for weighing harms and benefits as part of the assessment of animal research. Laboratory Animals, 53(1), 17–27.

    Article  Google Scholar 

  • Guillén, J. (2017). Laboratory animals: Regulations and recommendations for the care and use of animals in research. Academic Press.

    Google Scholar 

  • Guillén, J., Gettayacamin, M., & Swearengen, J. R. (2017). Challenges and opportunities in implementation: The AAALAC international perspective. ILAR Journal, 57(3), 368–377.

    Article  Google Scholar 

  • Hajar, R. (2011). Animal testing and medicine. Heart views: the official journal of the Gulf Heart Association, 12(1), 42.

    Article  Google Scholar 

  • Hollands, C. (1986). The animals (scientific procedures) act 1986. Lancet (London, England), 2(8497), 32–33.

    Article  Google Scholar 

  • Hubrecht, R. C., & Carter, E. (2019). The 3Rs and humane experimental technique: Implementing change. Animals, 9(10), 754.

    Article  Google Scholar 

  • Kahn, J. (2012). Raising the bar: The implications of the IOM report on the use of chimpanzees in research. Hastings Center Report, 42(s1), S27–S30.

    Article  Google Scholar 

  • Kaklamanis, P. M. (1992). Experimental animal models resembling rheumatoid arthritis. Clinical Rheumatology, 11(1), 41–47.

    Article  Google Scholar 

  • Kang, H. (2021). Statistical messages from ARRIVE 2.0 guidelines. The Korean Journal of Pain, 34(1), 1.

    Article  Google Scholar 

  • Karp, N. A., Wilson, Z., Stalker, E., Mooney, L., Lazic, S. E., Zhang, B., & Hardaker, E. (2020). A multi-batch design to deliver robust estimates of efficacy and reduce animal use–a syngeneic tumour case study. Scientific Reports, 10(1), 1–10.

    Article  Google Scholar 

  • Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Animal research: Reporting in vivo experiments: The ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1577–1579.

    Article  Google Scholar 

  • King, A., & Bowe, J. (2016). Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochemical Pharmacology, 99, 1–10.

    Article  Google Scholar 

  • Kinter, L. B., DeHaven, R., Johnson, D. K., & DeGeorge, J. J. (2021). A brief history of use of animals in biomedical research and perspective on non-animal alternatives. ILAR journal, 62, 7–16.

    Article  Google Scholar 

  • Kooijman, M. (2013). Why animal studies are still being used in drug development. Alternatives to Laboratory Animals, 41(6), P79–P81.

    Article  Google Scholar 

  • Macleod, M., & Mohan, S. (2019). Reproducibility and rigor in animal-based research. ILAR Journal, 60(1), 17–23.

    Article  Google Scholar 

  • Mak, I. W., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. American Journal of Translational Research, 6(2), 114.

    Google Scholar 

  • McGonigle, P., & Ruggeri, B. (2014). Animal models of human disease: Challenges in enabling translation. Biochemical Pharmacology, 87(1), 162–171.

    Article  Google Scholar 

  • Meehan, T. F. (2019). Know thy PDX model. Cancer Research, 79(17), 4324–4325.

    Article  Google Scholar 

  • Miyoshi, M., & Liu, S. (2018). Collagen-induced arthritis models rheumatoid arthritis (pp. 3–7). Springer.

    Google Scholar 

  • Muñoz-Fontela, C., Dowling, W. E., Funnell, S. G., Gsell, P.-S., Riveros-Balta, A. X., Albrecht, R. A., et al. (2020). Animal models for COVID-19. Nature, 586(7830), 509–515.

    Article  Google Scholar 

  • National Research Council. (2011). Chimpanzees in biomedical and behavioral research: Assessing the necessity. National Academies Press.

    Google Scholar 

  • Noble, D. (2008). Claude Bernard, the first systems biologist, and the future of physiology. Experimental Physiology, 93(1), 16–26.

    Article  Google Scholar 

  • Ogle, W. (2014). Parts of animals complete works of Aristotle (Vol. 1, pp. 994–1086). Princeton University Press.

    Google Scholar 

  • Olson, M. V., & Varki, A. (2003). Sequencing the chimpanzee genome: Insights into human evolution and disease. Nature Reviews Genetics, 4(1), 20–28.

    Article  Google Scholar 

  • Olsson, I. A. S., Silva, S. P. d., Townend, D., & Sandøe, P. (2017). Protecting animals and enabling research in the European Union: An overview of development and implementation of directive 2010/63/EU. ILAR Journal, 57(3), 347–357.

    Article  Google Scholar 

  • Pandey, K., Acharya, A., Mohan, M., Ng, C. L., Reid, S. P., & Byrareddy, S. N. (2021). Animal models for SARS-CoV-2 research: A comprehensive literature review. Transboundary and Emerging Diseases, 68(4), 1868–1885.

    Article  Google Scholar 

  • Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Journal of Cerebral Blood Flow & Metabolism, 40(9), 1769–1777.

    Article  Google Scholar 

  • Ransohoff, R. M. (2012). Animal models of multiple sclerosis: The good, the bad and the bottom line. Nature Neuroscience, 15(8), 1074–1077.

    Article  Google Scholar 

  • Régnier, C. (2013). Claude Bernard (1813–1878) and experimental medicine “physiology, physiology, it’s in me…”. Medicographia, 35, 474–484.

    Google Scholar 

  • Rivera, E. A. B., Hernández-González, R., Carbone, C., Baamonde, J. M., Rivera, T. A. B., & Carissimi, A. S. (2018). Laboratory animal legislation in Latin America. In Laboratory animals (pp. 91–116). Elsevier.

    Google Scholar 

  • Roep, B. O., Buckner, J., Sawcer, S., Toes, R., & Zipp, F. (2012). The problems and promises of research into human immunology and autoimmune disease. Nature Medicine, 18(1), 48–53.

    Article  Google Scholar 

  • Schultz, S. G. (2002). William Harvey and the circulation of the blood: The birth of a scientific revolution and modern physiology. Physiology, 17(5), 175–180.

    Article  Google Scholar 

  • Schwindaman, D. F. (1999). The history of the animal welfare act. In C. W. McPherson & S. F. Mattingly (Eds.), 50 years of laboratory animal science (pp. 147–151). American Association for Laboratory Animal Science.

    Google Scholar 

  • Shackelford, J. (2003). William Harvey and the mechanics of the heart. Oxford University Press.

    Google Scholar 

  • Shaffer, C. (2021). Long-awaited NIH working group report on animal research rigor: ‘a good start’. Nature Portfolio.

    Book  Google Scholar 

  • Silverman, J., Suckow, M. A., & Murthy, S. (2014). The IACUC handbook. CRC Press.

    Book  Google Scholar 

  • Snoy, P. (2010). Establishing efficacy of human products using animals: The US food and drug administration’s “animal rule”. Veterinary Pathology, 47(5), 774–778.

    Article  Google Scholar 

  • Studholme, L., Sutherland, J., Desai, T., Hockley, J., Care, R., Nordgren, I. K., et al. (2019). Evaluation of the monocyte activation test for the safety testing of meningococcal B vaccine Bexsero: A collaborative study. Vaccine, 37(29), 3761–3769.

    Article  Google Scholar 

  • Tadenev, A. L., & Burgess, R. W. (2019). Model validity for preclinical studies in precision medicine: Precisely how precise do we need to be? Mammalian Genome, 30(5), 111–122.

    Article  Google Scholar 

  • Törnell, J., & Snaith, M. (2002). Transgenic systems in drug discovery: From target identification to humanized mice. Drug Discovery Today, 7(8), 461–470.

    Article  Google Scholar 

  • Valentini, S., Santoro, G., Baffetta, F., Franceschi, S., Paludi, M., Brandini, E., et al. (2019). Monocyte-activation test to reliably measure the pyrogenic content of a vaccine: An in vitro pyrogen test to overcome in vivo limitations. Vaccine, 37(29), 3754–3760.

    Article  Google Scholar 

  • Vasbinder, M. A., & Locke, P. (2016). Introduction: Global laws, regulations, and standards for animals in research. ILAR Journal, 57(3), 261–265.

    Article  Google Scholar 

  • Veenhuis, R. T., & Zeiss, C. J. (2021). Animal models of COVID-19 II. Comparative immunology. ILAR Journal, 62, 17–34.

    Article  Google Scholar 

  • Veening-Griffioen, D. H., Ferreira, G. S., van Meer, P. J., Boon, W. P., Gispen-de Wied, C. C., Moors, E. H., & Schellekens, H. (2019). Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer’s disease. European Journal of Pharmacology, 859, 172524.

    Article  Google Scholar 

  • Veening-Griffioen, D. H., Ferreira, G. S., Boon, W. P., Gispen-de Wied, C. C., Schellekens, H., Moors, E. H., & Van Meer, P. J. (2021). Tradition, not science, is the basis of animal model selection in translational and applied research. ALTEX-Alternatives to Animal Experimentation, 38(1), 49–62.

    Google Scholar 

  • Yasinski, E. (2018). Study questions animal efficacy data behind trials. American Association for the Advancement of Science.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret S. Landi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landi, M.S. (2023). Animals in Research in the Pharmaceutical Industry. In: Valdés, E., Lecaros, J.A. (eds) Handbook of Bioethical Decisions. Volume I. Collaborative Bioethics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-29451-8_29

Download citation

Publish with us

Policies and ethics

Navigation