Hüftgelenksdefekte und ihre Behandlung

  • Chapter
  • First Online:
Fortschritte in der speziellen Hüftchirurgie

Zusammenfassung

Revisionsoperationen am Hüftgelenk, die mit schweren Knochendefekten einhergehen, können eine Herausforderung darstellen. Die innovative Forschung in der Orthopädie und Biotechnologie hat dazu beigetragen, erfolgreiche Techniken, Instrumente und chirurgische Implantate zu entwickeln, um die normale Anatomie der Hüfte wiederherzustellen. Eine sorgfältige präoperative Planung sollte der erste Schritt zur Rekonstruktion sein. Zunächst muss eine Infektion ausgeschlossen werden, und im Zweifelsfall sollte eine Hüftaspiration durchgeführt werden. Die Bildgebung beginnt mit Standard-Röntgenaufnahmen des Beckens und der betroffenen Hüfte; spezielle Röntgenaufnahmen (z. B. Judet-Schrägaufnahmen) und modernere Bildgebungsverfahren wie MARS-CT können helfen, das Ausmaß des Knochenverlustes besser zu beurteilen. Die Paprosky-Klassifikation ist das am häufigsten verwendete System zur Beschreibung und Kategorisierung von Ort und Ausmaß des Knochenverlustes. Der für die Rekonstruktion gewählte chirurgische Zugang sollte einen weiten Blick auf die Hüftpfanne ermöglichen und daher so weit wie nötig ausgedehnt werden. Zu den derzeitigen Optionen für die Rekonstruktion gehören Impaction Grafting und zementfreie Implantate für kleinere Defekte. Für größere Defekte stehen neue Implantate wie trabekuläre Metallimplantate, Cup-Cage-Konstruktionen oder individuell angefertigte Vorrichtungen zur Verfügung. Der Grundgedanke ist, die anatomische Position der Hüfte so weit wie möglich wiederherzustellen und eine stabile Rekonstruktion zu schaffen, die der täglichen physiologischen Belastung standhält.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Kurtz SM, Ong KL, Schmier J, Zhao K, Mowat F, Lau E. Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J Arthroplasty. 2009;24(2):195–203. https://doi.org/10.1016/j.arth.2007.11.015.

    Article  PubMed  Google Scholar 

  2. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487–97. https://doi.org/10.2106/JBJS.D.02441.

    Article  PubMed  Google Scholar 

  3. Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2014;96(8):624–30. https://doi.org/10.2106/JBJS.M.00285.

    Article  PubMed  Google Scholar 

  4. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5. https://doi.org/10.2106/JBJS.F.00222.

    Article  PubMed  Google Scholar 

  5. Inacio MCS, Graves SE, Pratt NL, Roughead EE, Nemes S. Increase in total joint arthroplasty projected from 2014 to 2046 in Australia: a conservative local model with international implications. Clin Orthop Relat Res. 2017;475(8):2130–7. https://doi.org/10.1007/s11999-017-5377-7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Patel A, Pavlou G, Mújica-Mota RE, Toms AD. The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J. 2015;97-B(8):1076–81. https://doi.org/10.1302/0301-620X.97B8.35170.

    Article  CAS  PubMed  Google Scholar 

  7. Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91(1):128–33. https://doi.org/10.2106/JBJS.H.00155.

    Article  PubMed  Google Scholar 

  8. Gwam CU, Mistry JB, Mohamed NS, Thomas M, Bigart KC, Mont MA, et al. Current epidemiology of revision total hip arthroplasty in the United States: National Inpatient Sample 2009 to 2013. J Arthroplasty. 2017;32(7):2088–92. https://doi.org/10.1016/j.arth.2017.02.046.

    Article  PubMed  Google Scholar 

  9. Hanna SA, Somerville L, McCalden RW, Naudie DD, MacDonald SJ. Highly cross-linked polyethylene decreases the rate of revision of total hip arthroplasty compared with conventional polyethylene at 13 years’ follow-up. Bone Joint J. 2016;98-B(1):28–32. https://doi.org/10.1302/0301-620X.98B1.36527.

    Article  CAS  PubMed  Google Scholar 

  10. Shen C, Tang ZH, Hu JZ, Zou GY, **ao RC, Yan DX. Does cross-linked polyethylene decrease the revision rate of total hip arthroplasty compared with conventional polyethylene? A meta-analysis. Orthop Traumatol Surg Res. 2014;100(7):745–50. https://doi.org/10.1016/j.otsr.2014.07.015.

    Article  CAS  PubMed  Google Scholar 

  11. Bitsch RG, Loidolt T, Heisel C, Ball S, Schmalzried TP. Reduction of osteolysis with use of Marathon cross-linked polyethylene. A concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg Am. 2008;90(7):1487–91. https://doi.org/10.2106/JBJS.F.00991.

    Article  PubMed  Google Scholar 

  12. Epinette J-A, Jolles-Haeberli BM. Comparative results from a national joint registry hip data set of a new cross-linked annealed polyethylene vs. both conventional polyethylene and ceramic bearings. J Arthroplasty. 2016;31(7):1483–91. https://doi.org/10.1016/j.arth.2015.12.041.

    Article  PubMed  Google Scholar 

  13. Scemama C, Anract P, Dumaine V, Babinet A, Courpied JP, Hamadouche M. Does vitamin E-blended polyethylene reduce wear in primary total hip arthroplasty: a blinded randomised clinical trial. Int Orthop. 2017;41(6):1113–8. https://doi.org/10.1007/s00264-016-3320-2.

    Article  PubMed  Google Scholar 

  14. Scemama C, Dora C, Langlois J, Hamadouche M. Minimum five-year wear rate of metal-on-highly cross-linked polyethylene in primary total hip arthroplasty. Int Orthop. 2015;39(6):1051–5. https://doi.org/10.1007/s00264-014-2609-2.

    Article  PubMed  Google Scholar 

  15. Mu Z, Tian J, Wu T, Yang J, Pei F. A systematic review of radiological outcomes of highly cross-linked polyethylene versus conventional polyethylene in total hip arthroplasty. Int Orthop. 2009;33(3):599–604. https://doi.org/10.1007/s00264-008-0716-7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35(2):215–23. https://doi.org/10.1007/s00264-010-1161-y.

    Article  PubMed  Google Scholar 

  17. Delaunay C, Hamadouche M, Girard J, Duhamel A, So FG. What are the causes for failures of primary hip arthroplasties in France? Clin Orthop Relat Res. 2013;471(12):3863–9. https://doi.org/10.1007/s11999-013-2935-5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thomas A, Epstein NJ, Stevens K, Goodman SB. Utility of Judet oblique X-rays in preoperative assessment of acetabular periprosthetic osteolysis: a preliminary study. Am J Orthop. 2007;36(7):E107–10.

    PubMed  Google Scholar 

  19. Giori NJ, Sidky AO. Lateral and high-angle oblique radiographs of the pelvis aid in diagnosing pelvic discontinuity after total hip arthroplasty. J Arthroplasty. 2011;26(1):110–2. https://doi.org/10.1016/j.arth.2009.12.006.

    Article  PubMed  Google Scholar 

  20. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32.

    Google Scholar 

  21. Chiang PP, Burke DW, Freiberg AA, Rubash HE. Osteolysis of the pelvis: evaluation and treatment. Clin Orthop Relat Res. 2003;417:164–74. https://doi.org/10.1097/01.blo.0000096816.78689.e5.

    Article  Google Scholar 

  22. Robinson E, Henckel J, Sabah S, Satchithananda K, Skinner J, Hart A. Cross-sectional imaging of metal-on-metal hip arthroplasties. Can we substitute MARS MRI with CT? Acta Orthop. 2014;85(6):577–84. https://doi.org/10.3109/17453674.2014.964618.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee K-J, Goodman SB. Identification of periprosthetic joint infection after total hip arthroplasty. J Orthop Transl. 2015;3(1):21–5. https://doi.org/10.1016/j.jot.2014.10.001.

    Article  Google Scholar 

  24. Goswami K, Parvizi J, Maxwell CP. Current recommendations for the diagnosis of acute and chronic PJI for hip and knee-cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing. Curr Rev Musculoskelet Med. 2018;11(3):428–38. https://doi.org/10.1007/s12178-018-9513-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309–14.e2. https://doi.org/10.1016/j.arth.2018.02.078.

    Article  PubMed  Google Scholar 

  26. Engh CA, Glassman AH, Griffin WL, Mayer JG. Results of cementless revision for failed cemented total hip arthroplasty. Clin Orthop Relat Res. 1988;235:91–110.

    Article  Google Scholar 

  27. Gustilo RB, Pasternak HS. Revision total hip arthroplasty with titanium ingrowth prosthesis and bone grafting for failed cemented femoral component loosening. Clin Orthop Relat Res. 1988;235:111–9.

    Article  Google Scholar 

  28. D’Antonio JA, Capello WN, Borden LS, Bargar WL, Bierbaum BF, Boettcher WG, et al. Classification and management of acetabular abnormalities in total hip arthroplasty. Clin Orthop Relat Res. 1989;243:126–37.

    Google Scholar 

  29. Gross AE, Allan DG, Catre M, Garbuz DS, Stockley I. Bone grafts in hip replacement surgery. The pelvic side. Orthop Clin North Am. 1993;24(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  30. Saleh KJ, Holtzman J, Gafni Asaleh L, Jaroszynski G, Wong P, Woodgate I, et al. Development, test reliability and validation of a classification for revision hip arthroplasty. J Orthop Res. 2001;19(1):50–6. https://doi.org/10.1016/S0736-0266(00)00021-8.

    Article  CAS  PubMed  Google Scholar 

  31. Paprosky WG, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  32. Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty. 2002;17(5):649–61.

    Article  PubMed  Google Scholar 

  33. Peck J, Kepecs DM, Mei B, Safir OA, Backstein D, Gross AE, et al. The effect of preoperative administration of intravenous tranexamic acid during revision hip arthroplasty: a retrospective study. J Bone Joint Surg Am. 2018;100(17):1509–16. https://doi.org/10.2106/JBJS.17.01212.

    Article  PubMed  Google Scholar 

  34. Greenky M, Shaner J, Rasouli MR, Han S-B, Parvizi J, Hozack WJ. Intraoperative blood salvage in revision total hip arthroplasty: who benefits most? J Arthroplasty. 2014;29(6):1298–300. https://doi.org/10.1016/j.arth.2013.12.009.

    Article  PubMed  Google Scholar 

  35. Zarin J, Grosvenor D, Schurman D, Goodman S. Efficacy of intraoperative blood collection and reinfusion in revision total hip arthroplasty. J Bone Joint Surg Am. 2003;85-A(11):2147–51.

    Article  Google Scholar 

  36. Maloney WJ, Paprosky W, Engh CA, Rubash H. Surgical treatment of pelvic osteolysis. Clin Orthop Relat Res. 2001;393:78–84.

    Article  Google Scholar 

  37. Rubash HE, Sinha RK, Paprosky W, Engh CA, Maloney WJ. A new classification system for the management of acetabular osteolysis after total hip arthroplasty. Instr Course Lect. 1999;48:37–42.

    CAS  PubMed  Google Scholar 

  38. Naudie DDR, Engh CA. Surgical management of polyethylene wear and pelvic osteolysis with modular uncemented acetabular components. J Arthroplasty. 2004;19(4 Suppl 1):124–9.

    Article  PubMed  Google Scholar 

  39. Narkbunnam R, Amanatullah DF, Electricwala AJ, Huddleston JI, Maloney WJ, Goodman SB. Outcome of 4 surgical treatments for wear and osteolysis of cementless acetabular components. J Arthroplasty. 2017;32(9):2799–805. https://doi.org/10.1016/j.arth.2017.04.028.

    Article  PubMed  Google Scholar 

  40. Callaghan JJ, Hennessy DW, Liu SS, Goetz KE, Heiner AD. Cementing acetabular liners into secure cementless shells for polyethylene wear provides durable mid-term fixation. Clin Orthop Relat Res. 2012;470(11):3142–7. https://doi.org/10.1007/s11999-012-2380-x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Adelani MA, Goodman SB, Maloney WJ, Huddleston JI. Removal of well-fixed cementless acetabular components in revision total hip arthroplasty. Orthopedics. 2016;39(2):e280–4. https://doi.org/10.3928/01477447-20160129-04.

    Article  PubMed  Google Scholar 

  42. Garbuz D, Morsi E, Gross AE. Revision of the acetabular component of a total hip arthroplasty with a massive structural allograft. Study with a minimum five-year follow-up. J Bone Joint Surg Am. 1996;78(5):693–7.

    Article  CAS  PubMed  Google Scholar 

  43. Busch VJJF, Gardeniers JWM, Verdonschot N, Slooff TJJH, Schreurs BW. Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old: a concise follow-up, at twenty to twenty-eight years, of a previous report. J Bone Joint Surg Am. 2011;93(4):367–71. https://doi.org/10.2106/JBJS.I.01532.

    Article  PubMed  Google Scholar 

  44. Della Valle CJ, Berger RA, Rosenberg AG, Galante JO. Cementless acetabular reconstruction in revision total hip arthroplasty. Clin Orthop Relat Res. 2004;420:96–100.

    Article  Google Scholar 

  45. Hallstrom BR, Golladay GJ, Vittetoe DA, Harris WH. Cementless acetabular revision with the Harris-Galante porous prosthesis. Results after a minimum of ten years of follow-up. J Bone Joint Surg Am. 2004;86-A(5):1007–11.

    Article  Google Scholar 

  46. Park DK, Della Valle CJ, Quigley L, Moric M, Rosenberg AG, Galante JO. Revision of the acetabular component without cement. A concise follow-up, at twenty to twenty-four years, of a previous report. J Bone Joint Surg Am. 2009;91(2):350–5. https://doi.org/10.2106/JBJS.H.00302.

    Article  PubMed  Google Scholar 

  47. Templeton JE, Callaghan JJ, Goetz DD, Sullivan PM, Johnston RC. Revision of a cemented acetabular component to a cementless acetabular component. A ten to fourteen-year follow-up study. J Bone Joint Surg Am. 2001;83-A(11):1706–11.

    Article  Google Scholar 

  48. Trumm BN, Callaghan JJ, Liu SS, Goetz DD, Johnston RC. Revision with cementless acetabular components: a concise follow-up, at a minimum of twenty years, of previous reports. J Bone Joint Surg Am. 2012;94(21):2001–4. https://doi.org/10.2106/JBJS.L.00058.

    Article  PubMed  Google Scholar 

  49. Boscainos PJ, Kellett CF, Maury AC, Backstein D, Gross AE. Management of periacetabular bone loss in revision hip arthroplasty. Clin Orthop Relat Res. 2007;465:159–65. https://doi.org/10.1097/BLO.0b013e3181560c6c.

    Article  PubMed  Google Scholar 

  50. Garcia-Cimbrelo E. Porous-coated cementless acetabular cups in revision surgery: a 6- to 11-year follow-up study. J Arthroplasty. 1999;14(4):397–406.

    Article  CAS  PubMed  Google Scholar 

  51. Goodman S, Saastamoinen H, Shasha N, Gross A. Complications of ilioischial reconstruction rings in revision total hip arthroplasty. J Arthroplasty. 2004;19(4):436–46.

    Article  PubMed  Google Scholar 

  52. Jenkins DR, Odland AN, Sierra RJ, Hanssen AD, Lewallen DG. Minimum five-year outcomes with porous tantalum acetabular cup and augment construct in complex revision total hip arthroplasty. J Bone Joint Surg Am. 2017;99(10):e49. https://doi.org/10.2106/JBJS.16.00125.

    Article  PubMed  Google Scholar 

  53. Grappiolo G, Loppini M, Longo UG, Traverso F, Mazziotta G, Denaro V. Trabecular metal augments for the management of Paprosky type III defects without pelvic discontinuity. J Arthroplasty. 2015;30(6):1024–9. https://doi.org/10.1016/j.arth.2015.01.001.

    Article  PubMed  Google Scholar 

  54. Schwarzkopf R, Ihn HE, Ries MD. Pelvic discontinuity: modern techniques and outcomes for treating pelvic disassociation. Hip Int. 2015;25(4):368–74. https://doi.org/10.5301/hipint.5000270.

    Article  PubMed  Google Scholar 

  55. Abdelnasser MK, Klenke FM, Whitlock P, Khalil AM, Khalifa YE, Ali HM, et al. Management of pelvic discontinuity in revision total hip arthroplasty: a review of the literature. Hip Int. 2015;25(2):120–6. https://doi.org/10.5301/hipint.5000201.

    Article  PubMed  Google Scholar 

  56. Sheth NP, Melnic CM, Paprosky WG. Acetabular distraction: an alternative for severe acetabular bone loss and chronic pelvic discontinuity. Bone Joint J. 2014;96-B(11 Suppl A):36–42. https://doi.org/10.1302/0301-620X.96B11.34455.

    Article  CAS  PubMed  Google Scholar 

  57. Brown NM, Hellman M, Haughom BH, Shah RP, Sporer SM, Paprosky WG. Acetabular distraction: an alternative approach to pelvic discontinuity in failed total hip replacement. Bone Joint J. 2014;96-B(11 Suppl A):73–7. https://doi.org/10.1302/0301-620X.96B11.34316.

    Article  CAS  PubMed  Google Scholar 

  58. Haw JG, Battenberg AK, Huang D-CT, Schmalzried TP. Wear rates of larger-diameter cross-linked polyethylene at 5 to 13 years: does liner thickness or component position matter? J Arthroplasty. 2017;32(4):1381–6. https://doi.org/10.1016/j.arth.2016.11.022.

    Article  PubMed  Google Scholar 

  59. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  PubMed  Google Scholar 

  60. Hernigou J, Picard L, Alves A, Silvera J, Homma Y, Hernigou P. Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop. 2014;38(11):2377–84. https://doi.org/10.1007/s00264-014-2343-9.

    Article  PubMed  Google Scholar 

  61. Hernigou J, Alves A, Homma Y, Guissou I, Hernigou P. Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement. Int Orthop. 2014;38(12):2585–90. https://doi.org/10.1007/s00264-014-2353-7.

    Article  PubMed  Google Scholar 

  62. Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, et al. Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. 2011;29(2):173–80. https://doi.org/10.1002/jor.21230.

    Article  PubMed  Google Scholar 

  63. Hernigou P, Desroches A, Queinnec S, Flouzat Lachaniette CH, Poignard A, Allain J, et al. Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. Int Orthop. 2014;38(9):1855–60. https://doi.org/10.1007/s00264-014-2318-x.

    Article  PubMed  Google Scholar 

  64. Maloney WJ, Herzwurm P, Paprosky W, Rubash HE, Engh CA. Treatment of pelvic osteolysis associated with a stable acetabular component inserted without cement as part of a total hip replacement. J Bone Joint Surg Am. 1997;79(11):1628–34.

    Article  CAS  PubMed  Google Scholar 

  65. Etienne G, Bezwada HP, Hungerford DS, Mont MA. The incorporation of morselized bone grafts in cementless acetabular revisions. Clin Orthop Relat Res. 2004;428:241–6.

    Article  Google Scholar 

  66. Harris WH. Allografting in total hip arthroplasty: in adults with severe acetabular deficiency including a surgical technique for bolting the graft to the ilium. Clin Orthop Relat Res. 1982;162:150–64.

    Article  Google Scholar 

  67. Harris WH, Crothers O, Oh I. Total hip replacement and femoral-head bone-grafting for severe acetabular deficiency in adults. J Bone Joint Surg Am. 1977;59(6):752–9.

    Article  CAS  PubMed  Google Scholar 

  68. Sporer SM, O’Rourke M, Chong P, Paprosky WG. The use of structural distal femoral allografts for acetabular reconstruction. Surgical technique. J Bone Joint Surg Am. 2006;88(Suppl 1 Pt 1):92–9. https://doi.org/10.2106/JBJS.E.00903.

    Article  PubMed  Google Scholar 

  69. Jasty M, Harris WH. Salvage total hip reconstruction in patients with major acetabular bone deficiency using structural femoral head allografts. J Bone Joint Surg Br. 1990;72(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  70. Kim Y, Tanaka C, Kanoe H. Long-term outcome of acetabular reconstruction using a Kerboull-type acetabular reinforcement device with hydroxyapatite granule and structural autograft for AAOS type II and III acetabular defects. J Arthroplasty. 2015;30(10):1810–4. https://doi.org/10.1016/j.arth.2015.04.034.

    Article  PubMed  Google Scholar 

  71. Tanaka C, Shikata J, Ikenaga M, Takahashi M. Acetabular reconstruction using a Kerboull-type acetabular reinforcement device and hydroxyapatite granules: a 3- to 8-year follow-up study. J Arthroplasty. 2003;18(6):719–25.

    Article  PubMed  Google Scholar 

  72. Weeden SH, Schmidt RH. The use of tantalum porous metal implants for Paprosky 3A and 3B defects. J Arthroplasty. 2007;22(6 Suppl 2):151–5. https://doi.org/10.1016/j.arth.2007.04.024.

    Article  PubMed  Google Scholar 

  73. Del Gaizo DJ, Kancherla V, Sporer SM, Paprosky WG. Tantalum augments for Paprosky IIIA defects remain stable at midterm follow-up. Clin Orthop Relat Res. 2012;470(2):395–401. https://doi.org/10.1007/s11999-011-2170-x.

    Article  PubMed  Google Scholar 

  74. Batuyong ED, Brock HS, Thiruvengadam N, Maloney WJ, Goodman SB, Huddleston JI. Outcome of porous tantalum acetabular components for Paprosky type 3 and 4 acetabular defects. J Arthroplasty. 2014;29(6):1318–22. https://doi.org/10.1016/j.arth.2013.12.002.

    Article  PubMed  Google Scholar 

  75. Clement RGE, Ray AG, MacDonald DJ, Wade FA, Burnett R, Moran M. Trabecular metal use in Paprosky type 2 and 3 acetabular defects: 5-year follow-up. J Arthroplasty. 2016;31(4):863–7. https://doi.org/10.1016/j.arth.2015.10.033.

    Article  PubMed  Google Scholar 

  76. Ilyas I, Alrumaih HA, Kashif S, Rabbani SA, Faqihi AH. Revision of type III and type IVB acetabular defects with Burch-Schneider anti-protrusio cages. J Arthroplasty. 2015;30(2):259–64. https://doi.org/10.1016/j.arth.2014.08.014.

    Article  PubMed  Google Scholar 

  77. Hsu C-C, Hsu C-H, Yen S-H, Wang J-W. Use of the Burch-Schneider cage and structural allografts in complex acetabular deficiency: 3- to 10-year follow up. Kaohsiung J Med Sci. 2015;31(10):540–7. https://doi.org/10.1016/j.kjms.2015.08.001.

    Article  PubMed  Google Scholar 

  78. Jones L, Grammatopoulos G, Singer G. The Burch-Schneider cage: 9-year survival in Paprosky type 3 acetabular defects. Clinical and radiological follow-up. Hip Int. 2012;22(1):28–34. https://doi.org/10.5301/HIP.2012.9078.

    Article  PubMed  Google Scholar 

  79. Berry DJ, Müller ME. Revision arthroplasty using an anti-protrusio cage for massive acetabular bone deficiency. J Bone Joint Surg Br. 1992;74(5):711–5.

    Article  CAS  PubMed  Google Scholar 

  80. Kösters C, Schliemann B, Decking D, Simon U, Zurstegge M, Decking J. The Müller acetabular reinforcement ring–still an option in acetabular revision of Paprosky 2 defects? Long-term results after 10 years. Acta Orthop Belg. 2015;81(2):257–63.

    PubMed  Google Scholar 

  81. Gerber A, Pisan M, Zurakowski D, Isler B. Ganz reinforcement ring for reconstruction of acetabular defects in revision total hip arthroplasty. J Bone Joint Surg Am. 2003;85-A(12):2358–64.

    Article  Google Scholar 

  82. Gibon E, Barut N, Courpied J-P, Hamadouche M. Revision total hip arthroplasty using the Kerboull acetabular reinforcement device for Paprosky type III defects involving the inferior margin of the acetabulum: a minimum five-year follow-up study. Bone Joint J. 2018;100-B(6):725–32.

    Article  CAS  PubMed  Google Scholar 

  83. Slooff TJ, Huiskes R, van Horn J, Lemmens AJ. Bone grafting in total hip replacement for acetabular protrusion. Acta Orthop Scand. 1984;55(6):593–6.

    Article  CAS  PubMed  Google Scholar 

  84. Mao Y, Xu C, Xu J, Li H, Liu F, Yu D, et al. The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects. Int Orthop. 2015;39(10):2023–30. https://doi.org/10.1007/s00264-015-2965-6.

    Article  PubMed  Google Scholar 

  85. Abolghasemian M, Tangsataporn S, Sternheim A, Backstein D, Safir O, Gross AE. Combined trabecular metal acetabular shell and augment for acetabular revision with substantial bone loss: a mid-term review. Bone Joint J. 2013;95-B(2):166–72. https://doi.org/10.1302/0301-620X.95B2.30608.

    Article  CAS  PubMed  Google Scholar 

  86. Whitehouse MR, Masri BA, Duncan CP, Garbuz DS. Continued good results with modular trabecular metal augments for acetabular defects in hip arthroplasty at 7 to 11 years. Clin Orthop Relat Res. 2015;473(2):521–7. https://doi.org/10.1007/s11999-014-3861-x.

    Article  PubMed  Google Scholar 

  87. Hanssen AD, Lewallen DG. Modular acetabular augments: composite void fillers. Orthopedics. 2005;28(9):971–2.

    Article  PubMed  Google Scholar 

  88. Kosashvili Y, Backstein D, Safir O, Lakstein D, Gross AE. Acetabular revision using an anti-protrusion (ilio-ischial) cage and trabecular metal acetabular component for severe acetabular bone loss associated with pelvic discontinuity. J Bone Joint Surg Br. 2009;91(7):870–6. https://doi.org/10.1302/0301-620X.91B7.22181.

    Article  CAS  PubMed  Google Scholar 

  89. Abolghasemian M, Tangsaraporn S, Drexler M, Barbuto R, Backstein D, Safir O, et al. The challenge of pelvic discontinuity: cup-cage reconstruction does better than conventional cages in mid-term. Bone Joint J. 2014;96-B(2):195–200. https://doi.org/10.1302/0301-620X.96B2.31907.

    Article  CAS  PubMed  Google Scholar 

  90. Amenabar T, Rahman WA, Hetaimish BM, Kuzyk PR, Safir OA, Gross AE. Promising mid-term results with a cup-cage construct for large acetabular defects and pelvic discontinuity. Clin Orthop Relat Res. 2016;474(2):408–14. https://doi.org/10.1007/s11999-015-4210-4.

    Article  PubMed  Google Scholar 

  91. Gibon E, Kerboull L, Courpied J-P, Hamadouche M. Acetabular reinforcement rings associated with allograft for severe acetabular defects. Int Orthop. 2019;43(3):561–71. https://doi.org/10.1007/s00264-018-4142-1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibon, E., Hamadouche, M., Goodman, S.B. (2023). Hüftgelenksdefekte und ihre Behandlung. In: Drescher, W.R., Koo, KH., Windsor, R.E. (eds) Fortschritte in der speziellen Hüftchirurgie. Springer, Cham. https://doi.org/10.1007/978-3-031-27202-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27202-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27201-1

  • Online ISBN: 978-3-031-27202-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics

Navigation