QS-Craft: Learning to Quantize, Scrabble and Craft for Conditional Human Motion Animation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

  • 342 Accesses

Abstract

This paper studies the task of conditional Human Motion Animation (cHMA). Given a source image and a driving video, the model should animate the new frame sequence, in which the person in the source image should perform a similar motion as the pose sequence from the driving video. Despite the success of Generative Adversarial Network (GANs) methods in image and video synthesis, it is still very challenging to conduct cHMA due to the difficulty in efficiently utilizing the conditional guided information such as images or poses, and generating images of good visual quality. To this end, this paper proposes a novel model of learning to Quantize, Scrabble, and Craft (QS-Craft) for conditional human motion animation. The key novelties come from the newly introduced three key steps: quantize, scrabble and craft. Particularly, our QS-Craft employs transformer in its structure to utilize the attention architectures. The guided information is represented as a pose coordinate sequence extracted from the driving videos. Extensive experiments on human motion datasets validate the efficacy of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The name of Craft is inspired by the game of Minecraft.

  2. 2.

    We refer the readers to [12] for details of the codebook learning.

  3. 3.

    Please refer to the supplementary for the transformer structure.

  4. 4.

    We reuse the symbols of \(\left\{ s_{i}\right\} \) and \(\left\{ t_{i}\right\} \) after embedding for simplicity.

References

  1. Bansal, A., Ma, S., Ramanan, D., Sheikh, Y.: Recycle-GAN: unsupervised video retargeting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_8

    Chapter  Google Scholar 

  2. Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative adversarial networks. ar**v preprint ar**v:1703.10717 (2017)

  3. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  4. Cai, H., Bai, C., Tai, Y.-W., Tang, C.-K.: Deep video generation, prediction and completion of human action sequences. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 374–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_23

    Chapter  Google Scholar 

  5. Cao, C., Hou, Q., Zhou, K.: Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. graph. (TOG) 33(4), 1–10 (2014)

    Google Scholar 

  6. Cao, C., et al.: The image local autoregressive transformer. In: NeuPIS (2021)

    Google Scholar 

  7. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. ar**v preprint ar**v:1810.04805 (2018)

  11. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ar**v preprint ar**v:2010.11929 (2020)

  12. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. ar**v preprint ar**v:1706.08500 (2017)

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. ar**v preprint ar**v:1312.6114 (2013)

  15. Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. ar**v preprint ar**v:2102.04432 (2021)

  16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. ar**v preprint ar**v:2103.14030 (2021)

  17. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. ar**v preprint ar**v:1705.09368 (2017)

  18. Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 99–108 (2018)

    Google Scholar 

  19. Mao, X., Li, Q., **e, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  20. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. ar**v preprint ar**v:1711.00937 (2017)

  21. Qi, G.J.: Loss-sensitive generative adversarial networks on Lipschitz densities. Int. J. Comput. Vision 128(5), 1118–1140 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian, X., et al.: Pose-normalized image generation for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 661–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_40

    Chapter  Google Scholar 

  23. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. ar**v preprint ar**v:1511.06434 (2015)

  24. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  25. Ramesh, A., et al.: Zero-shot text-to-image generation. ar**v preprint ar**v:2102.12092 (2021)

  26. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2377–2386 (2019)

    Google Scholar 

  27. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. Adv. Neural. Inf. Process. Syst. 32, 7137–7147 (2019)

    Google Scholar 

  28. Siarohin, A., Woodford, O.J., Ren, J., Chai, M., Tulyakov, S.: Motion representations for articulated animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13653–13662 (2021)

    Google Scholar 

  29. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder variational autoencoders. ar**v preprint ar**v:1602.02282 (2016)

  30. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

    Google Scholar 

  31. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MOCOGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1526–1535 (2018)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. ar**v preprint ar**v:1706.03762 (2017)

  33. Wang, T.C., et al.: Video-to-video synthesis. ar**v preprint ar**v:1808.06601 (2018)

  34. Wiles, O., Koepke, A.S., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_41

    Chapter  Google Scholar 

  35. Xu, C., Fu, Y., Wen, C., Pan, Y., Jiang, Y.G., Xue, X.: Pose-guided person image synthesis in the non-iconic views. IEEE Trans. Image Process. 29, 9060–9072 (2020)

    Article  MATH  Google Scholar 

  36. Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 204–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_13

    Chapter  Google Scholar 

  37. Zhang, W., Zhu, M., Derpanis, K.G.: From actemes to action: a strongly-supervised representation for detailed action understanding. In: 2013 IEEE International Conference on Computer Vision, pp. 2248–2255 (2013). https://doi.org/10.1109/ICCV.2013.280

  38. Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2347–2356 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (2022M710746), the Science and Technology Major Project of Commission of Science and Technology of Shanghai (No. 21XD1402500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Qian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 33257 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y., Qian, X., Luo, S., Guo, G., Xue, X., Fu, Y. (2023). QS-Craft: Learning to Quantize, Scrabble and Craft for Conditional Human Motion Animation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation