MVFI-Net: Motion-Aware Video Frame Interpolation Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

Abstract

Video frame interpolation (VFI) is to synthesize the intermediate frame given successive frames. Most existing learning-based VFI methods generate each target pixel by using the war** operation with either one predicted kernel or flow, or both. However, their performances are often degraded due to the issues on the limited direction and scope of the reference regions, especially encountering complex motions. In this paper, we propose a novel motion-aware VFI network (MVFI-Net) to address these issues. One of the key novelties of our method lies in the newly developed war** operation, i.e., motion-aware convolution (MAC). By predicting multiple extensible temporal motion vectors (MVs) and filter kernels for each target pixel, the direction and scope could be enlarged simultaneously. Besides, we first attempt to incorporate the pyramid structure into the kernel-based VFI, which can decompose large motions into smaller scales to improve the prediction efficiency. The quantitative and qualitative experimental results have demonstrated the proposed method delivers the state-of-the-art performance on the diverse benchmarks with various resolutions. Our codes are available at https://github.com/MediaLabVFI/MVFI-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Proc. Int. J. Comput. Vis. 1–8 (2007)

    Google Scholar 

  2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3698–3707 (2019)

    Google Scholar 

  3. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: Memc-net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 43, 933–948 (2019)

    Article  Google Scholar 

  4. Bao, W., Zhang, X., Chen, L., Ding, L., Gao, Z.: High-order model and dynamic filtering for frame rate up-conversion. IEEE Trans. Image Process. 27, 3813–3826 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castagno, R., Haavisto, P., Ramponi, G.: A method for motion adaptive frame rate up-conversion. IEEE Trans. Circuits Syst. Video Technol. 6, 436–446 (1996)

    Article  Google Scholar 

  6. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, pp. 168–172 (1994)

    Google Scholar 

  7. Cheng, X., Chen, Z.: Video frame interpolation via deformable separable convolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10607–10614 (2020)

    Google Scholar 

  8. Cheng, X., Chen, Z.: Multiple video frame interpolation via enhanced deformable separable convolution. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7029–7045 (2021)

    Google Scholar 

  9. Chi, Z., Mohammadi Nasiri, R., Liu, Z., Lu, J., Tang, J., Plataniotis, K.N.: All at once: temporally adaptive multi-frame interpolation with advanced motion modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 107–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_7

    Chapter  Google Scholar 

  10. Choi, H., Bajić, I.V.: Deep frame prediction for video coding. IEEE Trans. Circuits Syst. Video Technol. 30, 1843–1855 (2020)

    Google Scholar 

  11. Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need for video frame interpolation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10663–10671 (2020)

    Google Scholar 

  12. Ding, T., Liang, L., Zhu, Z., Zharkov, I.: CDFI: compression-driven network design for frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7997–8007 (2021)

    Google Scholar 

  13. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2758–2766 (2015)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: RIFE: real-time intermediate flow estimation for video frame interpolation. ar**v preprint ar**v:2011.06294 (2020)

  16. Huo, S., Liu, D., Li, B., Ma, S., Wu, F., Gao, W.: Deep network-based frame extrapolation with reference frame alignment. IEEE Trans. Circuits Syst. Video Technol. 31, 1178–1192 (2021)

    Article  Google Scholar 

  17. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  18. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  19. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super slomo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3813–3826 (2018)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  21. Lee, H., Kim, T., Chung, T.Y., Pak, D., Ban, Y., Lee, S.: AdaCof: adaptive collaboration of flows for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5315–5324 (2020)

    Google Scholar 

  22. Li, H., Yuan, Y., Wang, Q.: Video frame interpolation via residue refinement. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2613–2617 (2020)

    Google Scholar 

  23. Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation using cyclic frame generation. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 8794–8802 (2019)

    Google Scholar 

  24. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4473–4481 (2017)

    Google Scholar 

  25. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. ar**v preprint ar**v:1511.05440, pp. 1–14 (2016)

  26. Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers, C.: Phasenet for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 498–507 (2018)

    Google Scholar 

  27. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based frame interpolation for video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1418 (2015)

    Google Scholar 

  28. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1701–1710 (2018)

    Google Scholar 

  29. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5436–5445 (2020)

    Google Scholar 

  30. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

    Google Scholar 

  31. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270 (2017)

    Google Scholar 

  32. Niklaus, S., Mai, L., Wang, O.: Revisiting adaptive convolutions for video frame interpolation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1098–1108 (2021)

    Google Scholar 

  33. Park, J., Ko, K., Lee, C., Kim, C.-S.: BMBC: bilateral motion estimation with bilateral cost volume for video interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 109–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_7

    Chapter  Google Scholar 

  34. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video frame interpolation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14519–14528 (2021)

    Google Scholar 

  35. Peleg, T., Szekely, P., Sabo, D., Sendik, O.: IM-Net for high resolution video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2393–2402 (2019)

    Google Scholar 

  36. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  37. Reda, F.A., Liu, G., Shih, K.J., Kirby, R., Barker, J., Tarjan, D., Tao, A., Catanzaro, B.: SDC-Net: video prediction using spatially-displaced convolution. In: Proceedings of the European Conference on Computer Vision, pp. 718–733 (2018)

    Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5113–5122 (2020)

    Google Scholar 

  40. Shi, Z., Liu, X., Shi, K., Dai, L., Chen, J.: Video frame interpolation via generalized deformable convolution. IEEE Trans. Multimedia 20, 426–436 (2022)

    Article  Google Scholar 

  41. Sim, H., Oh, J., Kim, M.: XVFI: extreme video frame interpolation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14469–14478 (2021)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  43. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  44. Wu, Z., Zhang, K., Xuan, H., Yang, J., Yan, Y.: DAPC-Net: deformable alignment and pyramid context completion networks for video inpainting. IEEE Signal Process. Lett. 28, 1145–1149 (2021)

    Article  Google Scholar 

  45. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Proc. Int. J. Comput. Vis. 1106–1128 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Zhao, L., Liu, X., Chen, J. (2023). MVFI-Net: Motion-Aware Video Frame Interpolation Network. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation