Abstract

Knee osteoarthritis severity grading from plain radiographs and magnetic resonance (MR) images is of great significance in the diagnosis of osteoarthritis (OA). Recently, deep learning had a great impact on improving the Kellgren and Lawrence (KL) grading scheme of Knee osteoarthritis KOA using models that acquire the contextual features spontaneously without the need for any conventional high computational spatial configuration modeling. In this study, we review the state-of-the-art deep learning methods that enhanced the knee osteoarthritis severity KL grading. Pre-trained models such as Resnet18, VGG, DenseNet, Convolutional Siamese neural network, ResNet34, Squeeze-and-excitation ResNet (SE-ResNet) were found to be employed to extract valuable data for clinical images in the surveyed papers. The survey concludes that some very significant sophisticated deep learning methods were employed in some studies to grade KOA, which may also work on grading other diseases. Moreover, we show that applying Vision Transformer (ViT) for this specific task can be a better option than most of the convolutional neural networks (CNNs) based models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun, H.J., Gold, G.E.: Diagnosis of osteoarthritis: imaging. Bone 51(2), 278–288 (2012). https://doi.org/10.1016/j.bone.2011.11.019

    Article  Google Scholar 

  2. Oka, H., et al.: Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthr. Cartil. 16(11), 1300–1306 (2008). https://doi.org/10.1016/j.joca.2008.03.011

    Article  Google Scholar 

  3. Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr. Cartil. 17(10), 1307–1312 (2009). https://doi.org/10.1016/j.joca.2009.04.010

    Article  Google Scholar 

  4. Yang, S.: Feature engineering in fine-grained image classification. Thesis, Jul. 2013. https://digital.lib.washington.edu:443/researchworks/handle/1773/23376. Accessed 17 Mar 2021

  5. Ebrahimkhani, S., et al.: A review on segmentation of knee articular cartilage: from conventional methods towards deep learning. Artif. Intell. Med. 106, 101851 (2020). https://doi.org/10.1016/j.artmed.2020.101851

    Article  Google Scholar 

  6. Esteva, A., et al.: Deep learning-enabled medical computer vision. npj Digit. Med. 4(1), 5 (2021). https://doi.org/10.1038/s41746-020-00376-2

    Article  Google Scholar 

  7. Serte, S., Akila, S.M, Almezhghwi, K.: Unsupervised classification of Covid-19 using chest X-rays with convolutional autoencoder. In: 4th International congress on Human-Computer Interaction, Optimization and robotic Applications, pp. 1–5 (2022). https://doi.org/10.1109/HORA55278.2022.9799880

  8. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19(1), 221–248 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  9. Almezhghwi, K., Serte, S., Al-Turjman, F.: Convolutional neural networks for the classification of chest X-rays in the IoT era. Multimedia Tools Appl. 80(19), 29051–29065 (2021). https://doi.org/10.1007/s11042-021-10907-y

    Article  Google Scholar 

  10. Kaymak, S., Almezhghwi, K., Shelag, A.A.S.: Classification of diseases on chest X-rays using deep learning. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, Mo., Sadikoglu, F.M. (eds.) ICAFS 2018. AISC, vol. 896, pp. 516–523. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04164-9_69

    Chapter  Google Scholar 

  11. Giger, M.L.: Machine learning in medical imaging. J. Am. Coll. Radiol. 15(3), 512–520 (2018). https://doi.org/10.1016/j.jacr.2017.12.028

    Article  Google Scholar 

  12. Khumsi, A.F., Almezhghwi, K., Adweb, K.: Deep learning based analysis in oncological studies: colorectal cancer staging. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M.B., Sadikoglu, F.M. (eds.) ICSCCW 2019. AISC, vol. 1095, pp. 573–579. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35249-3_73

    Chapter  Google Scholar 

  13. Almezhghwi, K.: Malaria detection using convolutional neural network. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds.) ICSCCW 2021. LNNS, vol. 362, pp. 116–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-92127-9_19

    Chapter  Google Scholar 

  14. Kim, M., et al.: Deep learning in medical imaging. Neurospine 16(4), 657–668 (2019). https://doi.org/10.14245/ns.1938396.198

    Article  Google Scholar 

  15. Abiyev, R.H., Ma’aitah, M.K.S.: Deep convolutional neural networks for chest diseases detection. J. Healthc. Eng. 2018 (2018). https://doi.org/10.1155/2018/4168538

  16. Ravi, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Heal. Inf. 21(1), 4–21 (2017). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  17. Ravishankar, H., et al.: Understanding the mechanisms of deep transfer learning for medical images. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 188–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_20

    Chapter  Google Scholar 

  18. Ting, D.S.W., Liu, Y., Burlina, P., Xu, X., Bressler, N.M., Wong, T.Y.: AI for medical imaging goes deep. Nat. Med. 24(5), 539–540 (2018). https://doi.org/10.1038/s41591-018-0029-3

    Article  Google Scholar 

  19. Bush, I.J., Abiyev, R., Sallam Ma’aitah, M.K., Altıparmak, H.: Integrated artificial intelligence algorithm for skin detection. ITM Web Conf. 16, 02004.https://doi.org/10.1051/itmconf/20181602004

  20. Currie, K.G., Hawk, E., Rohren, E., Vial, A., Klein, R.: Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 50(4), 477–487 (2019). https://doi.org/10.1016/j.jmir.2019.09.005

    Article  Google Scholar 

  21. Thomas, K.A., et al.: Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol. Artif. Intell. 2(2), e190065 (2020). https://doi.org/10.1148/ryai.2020190065

    Article  MathSciNet  Google Scholar 

  22. Li, M.D., et al.: Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. npj Digit. Med. 3(1), 1–9 (2020). https://doi.org/10.1038/s41746-020-0255-1

    Article  MathSciNet  Google Scholar 

  23. Antony, J., McGuinness, K., O’Connor, N.E., Moran, K.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, pp. 1195–1200 (2016). https://doi.org/10.1109/ICPR.2016.7899799

  24. Kim, D.H., Lee, K.J., Choi, D., Lee, J.I., Choi, H.G., Lee, Y.S.: Can additional patient information improve the diagnostic performance of deep learning for the interpretation of knee osteoarthritis severity. J. Clin. Med. 9(10), 3341 (2020). https://doi.org/10.3390/jcm9103341

    Article  Google Scholar 

  25. Nguyen, H.H., Saarakkala, S., Blaschko, M.B., Tiulpin, A.: Semixup: in- and out-of-manifold regularization for deep semi-supervised knee osteoarthritis severity grading from plain radiographs. IEEE Trans. Med. Imaging 39(12), 4346–4356 (2020). https://doi.org/10.1109/TMI.2020.3017007

    Article  Google Scholar 

  26. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. ar**v preprint ar**v (2020). https://doi.org/10.48550/ar**v.2010.11929

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elbrus Imanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akila, S.M., Imanov, E., Almezhghwi, K. (2023). Analysis of Knee Osteoarthritis Grading Using Deep Learning. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M.B., Sadikoglu, F. (eds) 15th International Conference on Applications of Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – ICAFS-2022. ICAFS 2022. Lecture Notes in Networks and Systems, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-031-25252-5_58

Download citation

Publish with us

Policies and ethics

Navigation