Brain-Computer Interface (BCI) Based on the EEG Signal Decomposition Butterfly Optimization and Machine Learning

  • Chapter
  • First Online:
Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning

Abstract

The Brain-Computer Interface (BCI) is a technology that helps disabled people to operate assistive devices bypassing neuromuscular channels. This study aims to process the Electroencephalography (EEG) signals and then translate these signals into commands by analyzing and categorizing them with Machine Learning algorithms. The findings can be onward used to control an assistive device. The significance of this project lies in assisting those with severe motor impairment, paralysis, or those who lost their limbs to be independent and confident by controlling their environment and offering them alternative ways of communication. The acquired EEG signals are digitally low-pass filtered and decimated. Onward, the wavelet decomposition is used for signal analysis. The features are mined from the obtained sub-bands. The dimension of extracted feature set is reduced by using the Butterfly Optimization algorithm. The Selected feature set is then processed by the classifiers. The performance of k-Nearest Neighbor, Support Vector Machine and Artificial Neural Network is compared for the categorization of motor imagery tasks by processing the selected feature set. The suggested method secures a highest accuracy score of 83.7% for the case of k-Nearest Neighbor classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Schiariti, The human rights of children with disabilities during health emergencies: The challenge of COVID-19. Dev. Med. Child Neurol. 62(6), 661 (2020)

    Article  Google Scholar 

  2. G.L. Krahn, WHO world report on disability: A review. Disabil. Health J. 4(3), 141–142 (2011)

    Article  Google Scholar 

  3. N. Veena, N. Anitha, A review of non-invasive BCI devices. Int. J. Biomed. Eng. Technol. 34(3), 205–233 (2020)

    Article  Google Scholar 

  4. T. Choy, E. Baker, K. Stavropoulos, Systemic racism in EEG research: Considerations and potential solutions. Affect. Sci. 3, 1–7 (2021)

    Google Scholar 

  5. X. Wan et al., A review on electroencephalogram based brain computer interface for elderly disabled. IEEE Access 7, 36380–36387 (2019)

    Article  Google Scholar 

  6. A. Kübler, The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics 13(2), 163–180 (2020)

    Article  Google Scholar 

  7. H. Berger, Über das elektroenkephalogramm des menschen. Arch. Für Psychiatr. Nervenkrankh. 87(1), 527–570 (1929)

    Article  Google Scholar 

  8. I. Arafat, Brain-computer interface: Past, present & future. Int. Islam. Univ. Chittagong IIUC Chittagong Bangladesh, 1–6 (2013)

    Google Scholar 

  9. L.A. Farwell, E. Donchin, Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  10. A. Rezeika, M. Benda, P. Stawicki, F. Gembler, A. Saboor, I. Volosyak, Brain–computer interface spellers: A review. Brain Sci. 8(4), 57 (2018)

    Article  Google Scholar 

  11. Y. Zhang, Invasive BCI and noninvasive BCI with VR/AR technology, 12153, 186–192 (2021)

    Google Scholar 

  12. P.R. Kennedy, R.A. Bakay, Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9(8), 1707–1711 (1998)

    Article  Google Scholar 

  13. P.R. Kennedy, R.A. Bakay, M.M. Moore, K. Adams, J. Goldwaithe, Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2), 198–202 (2000)

    Article  Google Scholar 

  14. M. Korr, RI physician traces tragedy, triumphs in’Man with bionic brain’. R I Med. J. 96(2), 47 (2013)

    Google Scholar 

  15. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, G. Pfurtscheller, Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 12(3), 331–338 (2004)

    Article  Google Scholar 

  16. T. Fujikado, Brain machine-interfaces for sensory systems, in Cognitive Neuroscience Robotics B, (Springer, 2016), pp. 209–225

    Chapter  Google Scholar 

  17. L.R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Article  Google Scholar 

  18. D. Seo et al., Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016)

    Article  Google Scholar 

  19. G.K. Anumanchipalli, J. Chartier, E.F. Chang, Speech synthesis from neural decoding of spoken sentences. Nature 568(7753), 493–498 (2019)

    Article  Google Scholar 

  20. P. Loizidou et al., Extending brain-computer interface access with a multilingual language model in the P300 speller. Brain Comput. Interf., 1–13 (2021)

    Google Scholar 

  21. J.M.R. Delgado, Physical Control of the Mind: Toward a Psychocivilized Society, vol 41 (World Bank Publications, 1969)

    Google Scholar 

  22. P. Kennedy, A. Ganesh, A. Cervantes, Slow Firing Single Units Are Essential for Optimal Decoding of Silent Speech (2022)

    Book  Google Scholar 

  23. G. Zu Putlitz et al., Exploring the Mind

    Google Scholar 

  24. M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, M.A. Nicolelis, A brain-to-brain interface for real-time sharing of sensorimotor information. Sci. Rep. 3(1), 1–10 (2013)

    Article  Google Scholar 

  25. V. Mishuhina, X. Jiang, Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process. Lett. 25(6), 783–787 (2018)

    Article  Google Scholar 

  26. Y. Song, D. Wang, K. Yue, N. Zheng, Z.-J. M. Shen. EEG-based motor imagery classification with deep multi-task learning, 1–8 (2019)

    Google Scholar 

  27. J. Belo, M. Clerc, D. Schön, “EEG-based auditory attention detection and its possible future applications for passive BCI,” Brain-Comput. Interf. Non-Clin. Home Sports Art Entertain. Educ. Well- Appl. (2022)

    Google Scholar 

  28. F. Fahimi, Z. Zhang, W. B. Goh, K. K. Ang, C. Guan. Towards EEG generation using GANs for BCI application, 1–4 (2019)

    Google Scholar 

  29. R. Abiri, S. Borhani, E.W. Sellers, Y. Jiang, X. Zhao, A comprehensive review of EEG-based brain–computer interface paradigms. J. Neural Eng. 16(1), 011001 (2019)

    Article  Google Scholar 

  30. B. Blankertz et al., The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

    Article  Google Scholar 

  31. S.M. Qaisar, A custom 70-channel mixed signal ASIC for the brain-PET detectors signal readout and selection. Biomed. Phys. Eng. Express 5(4), 045018 (2019)

    Article  Google Scholar 

  32. S. Mian Qaisar, Isolated speech recognition and its transformation in visual signs. J. Electr. Eng. Technol. 14(2), 955–964 (2019)

    Article  Google Scholar 

  33. S. M. Qaisar, S. I. Khan, K. Srinivasan, and M. Krichen. Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. J. King Saud Univ. Comput. Inf. Sci. (2022)

    Google Scholar 

  34. S.M. Qaisar, A. Mihoub, M. Krichen, H. Nisar, Multirate processing with selective subbands and machine learning for efficient arrhythmia classification. Sensors 21(4), 1511 (2021)

    Article  Google Scholar 

  35. H. Fatayerji, R. Al Talib, A. Alqurashi, S. M. Qaisar. sEMG signal features extraction and machine learning based gesture recognition for prosthesis hand, 166–171 (2022)

    Google Scholar 

  36. S. Mian Qaisar, F. Alsharif, Signal piloted processing of the smart meter data for effective appliances recognition. J. Electr. Eng. Technol 15(5), 2279–2285 (2020)

    Article  Google Scholar 

  37. S. Mian Qaisar, Signal-piloted processing and machine learning based efficient power quality disturbances recognition. PLoS One 16(5), e0252104 (2021)

    Article  Google Scholar 

  38. S. Mian Qaisar, A proficient Li-ion battery state of charge estimation based on event-driven processing. J. Electr. Eng. Technol. 15(4), 1871–1877 (2020)

    Article  Google Scholar 

  39. S.M. Qaisar, Efficient mobile systems based on adaptive rate signal processing. Comput. Electr. Eng. 79, 106462 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mian Qaisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alghamdi, M., Mian Qaisar, S., Bawazeer, S., Saifuddin, F., Saeed, M. (2023). Brain-Computer Interface (BCI) Based on the EEG Signal Decomposition Butterfly Optimization and Machine Learning. In: Qaisar, S.M., Nisar, H., Subasi, A. (eds) Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-031-23239-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23239-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23238-1

  • Online ISBN: 978-3-031-23239-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation