Sourdough: A Tool for Non-conventional Fermentations and to Recover Side Streams

  • Chapter
  • First Online:
Handbook on Sourdough Biotechnology

Abstract

The world population growth trend and the necessity to provide a nutritionally balanced diet and to reduce greenhouse gas emissions require relevant production increases of vegetables, as well as the transition to a diet higher in plant rather than animal proteins (Banovic et al. Appetite 125:233–243, 2018; Hayes et al. Child Obes 14(1):11–17, 2018). Aiming at either addressing environmental concerns and meeting nutritional deficiencies and recommendations, staple foods fortification has been recently identified as an effective and promising intervention (Mannar and Hurrell. Food fortification in a globalized world. 1st ed. Academic Press, Cambridge, 2018). To date, several studies investigated the nutritional value of additional ingredients to be used as wheat-substituting in cereal-based products.

Legumes and pseudo-cereals, side-streams of the cereal industry including bran, germ, and brewer’s spent grain, are excellent sources of proteins with high biological value or dietary fibers, and supply relevant levels of vitamins, minerals, oligosaccharides, and phenolic compounds.

Nevertheless, the high content of fibers, the absence of gluten, and the peculiar sensory characteristics may impair their high nutritional values worsening the technological and organoleptic profiles of the products. Moreover, the presence of anti-nutritional factors (ANF) further limited the use of such ingredients by the food industry.

Different biotechnological options, such as air fractionation, roasting, soaking, germination, and fermentation were already proposed to decrease the ANF level, and to improve technological properties and sensory profile of non-wheat flours and cereal side-streams. Among these options, sourdough fermentation, often driven by the use of selected lactic acid bacteria (LAB) has largely been recognized as a suitable tool to improve the overall quality of these alternative matrices. Fermented ingredients can thus be used for staple food fortification, exploiting more of their potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banovic M, Arvola A, Pennanen K, Duta DE, Brückner-Gühmann M, Lähteenmäki L, Grunert KG (2018) Foods with increased protein content: A qualitative study on European consumer preferences and perceptions. Appetite 125:233–243

    Article  PubMed  Google Scholar 

  2. Hayes JF, Balantekin KN, Altman M, Wilfley DE, Taylor CB, Williams J (2018) Sleep patterns and quality are associated with severity of obesity and weight-related behaviors in adolescents with overweight and obesity. Child Obes 14(1):11–17

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mannar MV, Hurrell RF (2018) Food fortification in a globalized world, 1th edn. Academic, Cambridge, USA

    Google Scholar 

  4. Hill CB, Li C (1906) Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Front Plant Sci 2016:7

    Google Scholar 

  5. FAO (2011) Global food losses and food waste—extent, causes and prevention. FAO, Rome, Italy

    Google Scholar 

  6. FAO (2012) Cereal supply and demand brief. FAO, Rome, Italy

    Google Scholar 

  7. Gustafsson J, Cederberg C, Sonesson U, Emanuelsson A (2011) The methodology of the FAO study: Global food losses and food waste-extent, causes and prevention. FAO, Rome, Italy

    Google Scholar 

  8. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87

    Article  CAS  Google Scholar 

  9. Patel S (2012) Cereal bran: the next super food with significant antioxidant and anticancer potential. Med J Nutr Metab 5:91–104

    Google Scholar 

  10. Poutanen K, Sozer N, Della Valle G (2014) How can technology help to deliver more of grain in cereal foods for a healthy diet? J Cereal Sci 59:327–336

    Article  CAS  Google Scholar 

  11. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69

    Article  CAS  PubMed  Google Scholar 

  12. Vanholme B, Desmet T, Ronsse F, Rabaey K, Van Breusegem F, De Mey M, Soetaert W, Boerjan W (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:174

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yun JS, Wee YJ, Kim JN, Ryu HW (2004) Fermentative production of D,L-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol Lett 26:1613–1616

    Article  CAS  PubMed  Google Scholar 

  14. Kalscheur KF, Garcia AD, Schingoethe DJ, Royón FD, Hippen AR (2012) Feeding biofuel co-products to dairy cattle. In: Makkar HPS (ed) Biofuel co-products as livestock feed. FAO, Rome, Italy, pp 115–154

    Google Scholar 

  15. Brandolini A, Hidalgo A (2012) Wheat germ: not only a by-product. Int J Food Sci Nutr 63:71–74

    Article  CAS  PubMed  Google Scholar 

  16. Verni M, Rizzello CG, Coda R (2019) Fermentation biotechnology applied to cereal industry by-products: nutritional and functional insights. Front Nutr 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hole AS, Rud I, Grimmer S, Sigl S, Narvhus J, Sahlstrøm S (2012) Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem 60:6369–6375

    Article  CAS  PubMed  Google Scholar 

  18. Coda R, Katina K, Rizzello CG (2015) Bran bioprocessing for enhanced functional properties. Curr Opin Food Sci 1:50–55

    Article  Google Scholar 

  19. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    Article  CAS  Google Scholar 

  20. Capozzi V, Russo P, Fragasso M, De Vita P, Fiocco D, Spano G (2012) Biotechnology and pasta-making: lactic acid bacteria as a new driver of innovation. Front Microbiol 3:94

    Article  PubMed  PubMed Central  Google Scholar 

  21. Torres-Leon C, Ramirez N, Londoño L, Martinez G, Diaz R, Navarro V, Alvarez B, Picazo B, Villarreal M, Ascacio J, Aguilar C (2018) Food waste and byproducts: an opportunity to minimize malnutrition and hunger in develo** countries. Front Sustain Food Syst 2:52

    Article  Google Scholar 

  22. Delcour J, Hoseney RC (2010) Principles of cereal science and technology. AACC, St. Paul, MN

    Book  Google Scholar 

  23. Hemdane S, Leys S, Jacobs PJ, Dornez E, Delcour JA, Courtin CM (2015) Wheat milling by-products and their impact on bread making. Food Chem 187:280–289

    Article  CAS  PubMed  Google Scholar 

  24. Kamal-Eldin A, Lærke HN, Knudsen KEB, Lampi AM, Piironen V, Adlercreutz H, Katina K, Poutanen K, Åman P (1912) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr Res 2009:53

    Google Scholar 

  25. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858

    Article  CAS  PubMed  Google Scholar 

  26. Coda R, Kärki I, Nordlund E, Heiniö RL, Poutanen K, Katina K (2014) Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiol 37:69–77

    Article  CAS  PubMed  Google Scholar 

  27. Bertsch A, Roy D, La Pointe G (2020) Fermentation of wheat bran and whey permeate by mono-cultures of Lacticaseibacillus rhamnosus strains and co-culture with yeast enhances bioactive properties. Front Bioeng Biotechnol 8:956

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spaggiari M, Ricci A, Calani L, Bresciani L, Neviani E, Dall’Asta C, Lazzi C, Galaverna G (2020) Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT 118:108668

    Article  CAS  Google Scholar 

  29. Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F (2020) Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 94:102997

    Article  CAS  Google Scholar 

  30. Manini F, Brasca M, Plumed-Ferrer C, Morandi S, Erba D, Casiraghi MC (2014) Study of the chemical changes and evolution of microbiota during sourdough like fermentation of wheat bran. Cereal Chem 91:342–349

    Article  CAS  Google Scholar 

  31. Zhao HM, Guo XN, Zhu KX (2017) Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem 217:28–36

    Article  CAS  PubMed  Google Scholar 

  32. Di Lena G, Patroni E, Quaglia GB (1997) Improving the nutritional value of wheat bran by a white-rot fungus. Int J Food Sci Technol 32:513–519

    Article  Google Scholar 

  33. Guo J, Bian YY, Zhu KX, Guo XN, Peng W, Zhou HM (2015) Activation of endogenous phytase and degradation of phytate in wheat bran. J Agric Food Chem 63:1082–1087

    Article  CAS  PubMed  Google Scholar 

  34. Arte E, Rizzello CG, Verni M, Nordlund E, Katina K, Coda R (2015) Impact of enzymatic and microbial bioprocessing on protein modification and nutritional properties of wheat bran. J Agric Food Chem 63:8685–8693

    Article  CAS  PubMed  Google Scholar 

  35. Pontonio E, Dingeo C, Di Cagno R, Blandino M, Gobbetti M, Rizzello CG (2020) Brans from hull-less barley, emmer and pigmented wheat varieties: From by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. Int J Food Microbiol 313:108384

    Article  CAS  PubMed  Google Scholar 

  36. Billingsley M, Suria A (1982) Effects of peripherally administered GABA and other amino acids on cardiopulmonary responses in anesthetized rats and dogs. Arch Int Pharmacodyn 255:131–140

    CAS  PubMed  Google Scholar 

  37. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, Sansawa H (2003) Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57:490–495

    Article  CAS  PubMed  Google Scholar 

  38. Anson NM, Hemery YM, Bast A, Haenen GR (2012) Optimizing the bioactive potential of wheat bran by processing. Food Funct 3:362–375

    Article  CAS  Google Scholar 

  39. Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lehtinen P, Bast A, Poutanen K, Haenen GRMM (2009) Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J Agric Food Chem 57:6148–6155

    Article  CAS  PubMed  Google Scholar 

  40. Deng H, Jia P, Jiang J, Bai Y, Fan TP, Zheng X, Cai Y (2019) Expression and characterisation of feruloyl esterases from Lactobacillus fermentum JN248 and release of ferulic acid from wheat bran. Int J Biol Macromol 138:272–277

    Article  CAS  PubMed  Google Scholar 

  41. Esteban-Torres M, Reverón I, Mancheño JM, de las Rivas B, Muñoz R (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79:5130–5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu Z, Kong J, Zhang S, Wang T, Liu X (2020) Comparison of enzyme secretion and ferulic acid production by Escherichia coli expressing different Lactobacillus feruloyl esterases. Front Microbiol 11:568716

    Article  PubMed  PubMed Central  Google Scholar 

  43. Savolainen OI, Coda R, Suomi K, Katina K, Juvonen R, Hanhineva K, Poutanen K (2014) The role of oxygen in the liquid fermentation of wheat bran. Food Chem 153:424–431

    Article  CAS  PubMed  Google Scholar 

  44. Servi S, Özkaya H, Colakoglu AS (2008) Dephytinization of wheat bran by fermentation with bakers’ yeast, incubation with barley malt flour and autoclaving at different pH levels. J Cereal Sci 48:471–476

    Article  CAS  Google Scholar 

  45. Katina K, Juvonen R, Laitila A, Flander L, Nordlund E, Kariluoto S, Piironen V, Poutanen K (2012) Fermented wheat bran as a functional ingredient in baking. Cereal Chem 89:126–134

    Article  CAS  Google Scholar 

  46. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med 232:1266–1274

    Article  CAS  Google Scholar 

  47. Zhang Y, Wang P, Kong Q, Cotty PJ (2021) Biotransformation of aflatoxin B1 by Lactobacillus helveticus FAM22155 in wheat bran by solid-state fermentation. Food Chem 341:128180

    Article  CAS  PubMed  Google Scholar 

  48. Pontonio E, Lorusso A, Gobbetti M, Rizzello CG (2017) Use of fermented milling by-products as functional ingredient to develop a low-glycaemic index bread. J Cereal Sci 77:235–242

    Article  CAS  Google Scholar 

  49. Prückler M, Lorenz C, Endo A, Kraler M, Dürrschmid K, Hendriks K, da Silva FS, Auterith E, Kneifel W, Michlmayr H (2015) Comparison of homo-and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Food Microbiol 49:211–219

    Article  PubMed  Google Scholar 

  50. Mikušová L, Gereková P, Kocková M, Šturdík E, Valachovičová M, Holubková A, Vajdák M, Mikuš L (2013) Nutritional, antioxidant, and glycaemic characteristics of new functional bread. Chem Pap 67:284–291

    Article  Google Scholar 

  51. Amadò R, Arrigoni E (1992) Nutritive and functional properties of wheat germ. Int Food Ingred 4:30–34

    Google Scholar 

  52. FAO, WHO, UNU (1995) Energy and protein requirements, Report of joint FAO/WHO/UNU expert consultation, WHO Tech. Rep. Ser. No. 724. WHO, Genova, Italy

    Google Scholar 

  53. Ge Y, Sun A, Ni Y, Cai T (2001) Study and development of a defatted wheat germ nutritive noodle. Eur Food Res Technol 212:344–348

    Article  CAS  Google Scholar 

  54. Zhu KX, Zhou HM, Qian HF (2006) Proteins extracted from defatted wheat germ: Nutritional and structural properties. Cereal Chem 83:69–75

    Article  CAS  Google Scholar 

  55. Rizzello CG, Nionelli L, Coda R, De Angelis M, Gobbetti M (2010) Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem 119:1079–1089

    Article  CAS  Google Scholar 

  56. Shahidi F, Zhong Y (2008) Bioactive peptides. J AOAC Int 91:914–931

    Article  CAS  PubMed  Google Scholar 

  57. Rizzello CG, Tagliazucchi D, Babini E, Rutella GS, Saa DLT, Gianotti A (2016) Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J Funct Foods 27:549–569

    Article  CAS  Google Scholar 

  58. Niu LY, Jiang ST, Pan LJ (2013) Preparation and evaluation of antioxidant activities of peptides obtained from defatted wheat germ by fermentation. J Food Sci Technol 50:53–61

    Article  CAS  PubMed  Google Scholar 

  59. Boros LG, Nichelatti M, Shoenfeld Y (2005) Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases. Ann N Y Acad Sci 1051:529–542

    Article  CAS  PubMed  Google Scholar 

  60. Saiko P, Ozsvar-Kozma M, Graser G, Lackner A, Grusch M, Madlener S, Krupitza G, Jaeger W, Hidvegi M, Agarwal RP, Fritzer-Szekeres M (2009) Avemar, a nontoxic fermented wheat germ extract, attenuates the growth of sensitive and 5-FdUrd/Ara-C cross-resistant H9 human lymphoma cells through induction of apoptosis. Oncol Rep 21:787–791

    PubMed  Google Scholar 

  61. Comín-Anduix B, Boros LG, Marin S, Boren J, Callol-Massot C, Centelles JJ, Torrres JL, Agell N, Bassilian S, Cascante M (2002) Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly (ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells. J Biol Chem 277:46408–46414

    Article  PubMed  Google Scholar 

  62. Rizzello CG, Mueller T, Coda R, Reipsch F, Nionelli L, Curiel JA, Gobbetti M (2013) Synthesis of 2-methoxy benzoquinone and 2, 6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ. Microb Cell Fact 12:105

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tovar LER, Gänzle MG (2021) Degradation of wheat germ agglutinin during sourdough fermentation. Foods 10:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sjövall O, Virtalaine T, Lapveteläinen A, Kallio H (2000) Development of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. J Agric Food Chem 48:3522–3527

    Article  PubMed  Google Scholar 

  65. Rizzello CG, Nionelli L, Coda R, Di Cagno R, Gobbetti M (2010) Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. Eur Food Res Technol 230:645–654

    Article  CAS  Google Scholar 

  66. Nordlund E, Aura A, Mattila I, Kössö T, Rouau X, Poutanen K (2012) Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J Agric Food Chem 60:8134–8145

    Article  CAS  PubMed  Google Scholar 

  67. Liukkonen KH, Katina K, Wilhelmsson A, Myllymaki O, Lampi AM, Kariluoto S, Piironen V, Heinonen SM, Nurmi T, Adlercreutz H, Peltoketo A, Pihlava JM, Hietaniemi V, Poutanen K (2003) Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 62:117–122

    Article  CAS  PubMed  Google Scholar 

  68. Patel M, Naik SN (2004) Gamma-oryzanol from rice bran oil—a review. J Sci Ind Res 63:569–578

    CAS  Google Scholar 

  69. Ross A, Kamal-Eldin A, Ȧman P (2004) Dietary alkylresorcinols: absorption, bioactivities and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr Rev 62:81–95

    Article  PubMed  Google Scholar 

  70. Katina K, Laitila A, Juvonen R, Liukkonen KH, Kariluoto S, Piironen V, Landberg R, Åman P, Poutanen K (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24:175–186

    Article  CAS  PubMed  Google Scholar 

  71. Hansen HB, Andreasen M, Nielsen M, Larsen L, Knudsen BK, Meyer A, Hansen Å (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42

    Article  CAS  Google Scholar 

  72. Nordlund E, Katina K, Aura AM, Poutanen K (2013) Changes in bran structure by bioprocessing with enzymes and yeast modifies the in vitro digestibility and fermentability of bran protein and dietary fibre complex. J Cereal Sci 58:200–208

    Article  CAS  Google Scholar 

  73. Koistinen VM, Katina K, Nordlund E, Poutanen K, Hanhineva K (2016) Changes in the phytochemical profile of rye bran induced by enzymatic bioprocessing and sourdough fermentation. Food Res Int 89:1106–1115

    Article  CAS  Google Scholar 

  74. Koistinen VM, Nordlund E, Katina K, Mattila I, Poutanen K, Hanhineva K, Aura AM (2017) Effect of bioprocessing on the in vitro colonic microbial metabolism of phenolic acids from rye bran fortified breads. J Agric Food Chem 65:1854–1864

    Article  CAS  PubMed  Google Scholar 

  75. Kaditzky S, Vogel RF (2008) Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228:291

    Article  CAS  Google Scholar 

  76. Kajala I, Mäkelä J, Coda R, Shukla S, Shi Q, Maina NH, Juvonen R, Ekholm P, Goyal A, Tenkanen M, Katina K (2016) Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl Microbiol Biotechnol 100:3499–3510

    Article  CAS  PubMed  Google Scholar 

  77. Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171

    Article  CAS  Google Scholar 

  78. Juliano BO (1985) Rice J Plant Foods 6:129–145

    Article  Google Scholar 

  79. Ryan EP, Heuberger AL, Weir TL, Barnett B, Broeckling CD, Prenni JE (2011) Rice bran fermented with Saccharomyces boulardii generates novel metabolite profiles with bioactivity. J Agric Food Chem 59:1862–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fabian C, Ju YH (2011) A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr 51:816–827

    Article  CAS  PubMed  Google Scholar 

  81. Heuberger AL, Lewis MR, Chen MH, Brick MA, Leach JE, Ryan EP (2010) Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLoS One 5:12195

    Article  Google Scholar 

  82. Kim KM, Yu KW, Kang DH, Suh HJ (2002) Anti-stress and anti-fatigue effect of fermented rice bran. Phytother Res 16:700–702

    Article  CAS  PubMed  Google Scholar 

  83. Seo YK, Jung SH, Song KY, Park JK, Park CS (2010) Anti-photoaging effect of fermented rice bran extract on UV-induced normal skin fibroblasts. Eur Food Res Technol 231:163–169

    Article  CAS  Google Scholar 

  84. Chung SY, Seo YK, Park JM, Seo MJ, Park JK, Kim JW, Park CS (2009) Fermented rice bran downregulates MITF expression and leads to inhibition of α-MSH-induced melanogenesis in B16F1 melanoma. Biosci Biotechnol Biochem 73:1704–1710

    Article  CAS  PubMed  Google Scholar 

  85. Liu L, Zhang R, Deng Y, Zhang Y, **ao J, Huang F, Wen W, Zhang M (2017) Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Food Chem 221:636–643

    Article  CAS  PubMed  Google Scholar 

  86. Yeong MS, Hee MS, Choon CH (2020) Characterization of high-ornithine-producing Weissella koreensis DB1 isolated from kimchi and its application in rice bran fermentation as a starter culture. Foods 9(11):1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mabunga DFN, Gonzales ELT, Kim HJ, Choung SY (2015) Treatment of GABA from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice. Biomol Ther 23:268

    Article  CAS  Google Scholar 

  88. Chinma CE, Ilowefah M, Shammugasamy B, Mohammed M, Muhammad K (2015) Effect of addition of protein concentrates from natural and yeast fermented rice bran on the rheological and technological properties of wheat bread. Int J Food Sci Technol 50:290–297

    Article  CAS  Google Scholar 

  89. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—a review. Food Res Int 41:850–868

    Article  CAS  Google Scholar 

  90. Korhola M, Hakonen R, Juuti K, Edelmann M, Kariluoto S, Nyström L, Sontag-Strohm T, Piironen V (2014) Production of folate in oat bran fermentation by yeasts isolated from barley and diverse foods. J Appl Microbiol 117:679–689

    Article  CAS  PubMed  Google Scholar 

  91. Degutyte-Fomins L, Sontag-Strohm T, Salovaara H (2002) Oat bran fermentation by rye sourdough. Cereal Chem 79:345–348

    Article  CAS  Google Scholar 

  92. Kontula P, Jaskari J, Nollet L, De Smet I, von Wright A, Poutanen K, Mattila-Sandholm T (1998) The colonization of a simulator of the human intestinal microbial ecosystem by a probiotic strain fed on a fermented oat bran product: effects on the gastrointestinal microbiota. Appl Microbiol Biotechnol 50:246–252

    Article  CAS  PubMed  Google Scholar 

  93. Pontonio E, Dingeo C, Gobbetti M, Rizzello CG (2019) Maize milling by-products: from food wastes to functional ingredients through lactic acid bacteria fermentation. Front Microbiol 10:561

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brewing 122:553–568

    Article  CAS  Google Scholar 

  95. Valverde P (1994) Barley spent grain and its future. Cerveza y Malta 122:7–26

    Google Scholar 

  96. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43:1–14

    Article  CAS  Google Scholar 

  97. Koirala P, Maina NH, Nihtilä H, Katina K, Coda R (2021) Brewers’ spent grain as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. Microb Cell Fact 20(1):1–13

    Article  Google Scholar 

  98. Plessas S, Trantallidi M, Bekatorou A, Kanellaki M, Nigam P, Koutinas AA (2007) Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making. Food Chem 105:187–194

    Article  CAS  Google Scholar 

  99. Gupta S, Jaiswal AK, Abu-Ghannam N (2013) Optimization of fermentation conditions for the utilization of brewing waste to develop a nutraceutical rich liquid product. Ind Crop Prod 44:272–282

    Article  CAS  Google Scholar 

  100. Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, Verardo V, Dìaz de Cerio E, Coda R, Rizzello CG (2020) Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Front Microbiol 1831:11

    Google Scholar 

  101. Schettino R, Acin-Albiac M, Verni M, Krona A, Knaapila A, Di Cagno R, Rizzello CG, Coda R (2021) Upcycling brewers’ spent grain: tailored bioprocessing to improve nutritional and antioxidant properties of pasta. Antioxidants 10:742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Waters DM, Jacob F, Titze J, Arendt EK, Zannini E (2012) Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur Food Res Technol 235:767–778

    Article  CAS  Google Scholar 

  103. Aprodu I, Simion AB, Banu I (2017) Valorisation of the brewers’ spent grain through sourdough bread making. Int J Food Eng 13(10)

    Google Scholar 

  104. Ktenioudaki A, Alvarez-Jubete L, Smyth TJ, Kilcawley K, Rai DK, Gallagher E (2015) Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer’s spent grain breads. Food Res Int 73:107–116

    Article  CAS  Google Scholar 

  105. Melikoglu M, Webb C (2013) Use of waste bread to produce fermentation products. In: Kosseva M, Webb C (eds) Food industry wastes. Elsevier, Amsterdam, pp 63–76

    Chapter  Google Scholar 

  106. Brancoli P, Bolton K, Eriksson M (2020) Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Manag 117:136–145

    Article  PubMed  Google Scholar 

  107. Mueller R, Bohatiel J, Blortz D, Frank B (1995) Process for the production of a seasoning sauce from bread. US Patent 5,407,689

    Google Scholar 

  108. Nakano M, Yoshida S (1977) Syrup production from bread waste by fermentation. Jpn Kokai Tokkyo Koho, 1 pp. CODEN: JKXXAF JP 52117446 19771001

    Google Scholar 

  109. Gelinas P, McKinnon CM, Pelletier M (1999) Sourdough-type bread from waste bread crumb. Food Microbiol 16:37–43

    Article  Google Scholar 

  110. Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699

    Article  CAS  PubMed  Google Scholar 

  111. Nionelli L, Wang Y, Pontonio E, Immonen M, Rizzello CG, Maina HN, Katina K, Coda R (2020) Antifungal effect of bioprocessed surplus bread as ingredient for bread-making: Identification of active compounds and impact on shelf-life. Food Control 118:107437

    Article  CAS  Google Scholar 

  112. Immonen M, Maina NH, Wang Y, Coda R, Katina K (2020) Waste bread recycling as a baking ingredient by tailored lactic acid fermentation. Int J Food Microbiol 327:108652

    Article  CAS  PubMed  Google Scholar 

  113. Immonen M, Maina NH, Coda R, Katina K (2021) The molecular state of gelatinized starch in surplus bread affects bread recycling potential. LWT 150:112071

    Article  CAS  Google Scholar 

  114. Kavitake D, Devi PB, Shetty PH (2020) Overview of an exopolysaccharides produced by Weissella genus—a review. Int J Biol Macromol 164:2964–2973

    Article  CAS  PubMed  Google Scholar 

  115. Verni M, Vekka A, Immonen M, Rizzello CG, Katina K, Coda R (2021) Biosynthesis of γ-aminobutyric acid by lactic acid bacteria in surplus bread and its use in bread-making. J Appl Microbiol. https://doi.org/10.1111/jam.15332

  116. Monnet AF, Laleg K, Michon C, Micard V (2019) Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci Technol 86:131–143

    Article  CAS  Google Scholar 

  117. Gobbetti M, De Angelis M, Di Cagno R, Polo A, Rizzello CG (2020) The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit Rev Food Sci Nutr 60(13):2158–2173

    Article  PubMed  Google Scholar 

  118. Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82

    Article  CAS  PubMed  Google Scholar 

  119. Smartt J, Nwokolo E (1996) Food and feed from legumes and oilseeds. Chapman and Hall, London, UK

    Google Scholar 

  120. Pelzer E, Bazot M, Makowski D, Corre-Hellou G, Naudin C, Al RM, Baranger E, Bedoussac L, Biarnès V, Boucheny P, Carrouée B, Dorvillez D, Foissy D, Gaillard B, Giuchard L, Mansard MC, Omon B, Prieur L, Jeuffroy MH (2012) Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron 40:39–53

    Article  Google Scholar 

  121. Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int 43:432–442

    Article  CAS  Google Scholar 

  122. Widmer RJ, Flammer AJ, Lerman LO, Lerman A (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128(3):229–238

    Article  PubMed  Google Scholar 

  123. Jenkins DJ, Kendall CW, Augustin LS, Mitchell S, Sahye-Pudaruth S, Blanco Mejia S, Chiavaroli L, Mirrahimi A, Ireland C, Bashyam B, Vidgen E, de Souza RJ, Sievenpiper JL, Coveney J, Leiter LA, Josse RG (2012) Effect of legume as part of low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 172:1653–1660

    Article  CAS  PubMed  Google Scholar 

  124. Feregrino-Perez AA, Berumen LC, Garcia-Alcocer G, Guevara-Gonzalez RG, Ramos-Gomez M, Reynoso-Camacho R, Acosta-Gallegos JA, Loarca-Piña G (2008) Composition of chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J Agric Food Chem 56:8737–8744

    Article  CAS  PubMed  Google Scholar 

  125. Mollard RC, Luhovyy BL, Panahi S, Nunez M, Hanley A, Andersona GH (2012) Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br J Nutr 108:111–122

    Article  Google Scholar 

  126. Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59(5):1203–1212

    Article  Google Scholar 

  127. Noorfarahzilah M, Lee JS, Sharifufin MS, Mohd Fadzelly AB, Hasmadi M (2014) Applications of composite flour in development of food products. Int Food Res J 21(6):2061–2074

    Google Scholar 

  128. Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: A reassessment. J Cereal Sci 4(2):97–106

    Article  CAS  Google Scholar 

  129. Boye JI, Zare F, Pletch A (2010) Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res Int 43(2):414–431

    Article  CAS  Google Scholar 

  130. Mann J, Schiedt B, Baumann A, Conde-Petit B, Vilgis TA (2014) Effect of heat treatment on wheat dough rheology and wheat protein solubility. Rev Agroquim Tecnol 20(5):341–351

    Google Scholar 

  131. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: Structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Article  PubMed  Google Scholar 

  132. Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res Int 43(2):399–394

    Article  CAS  Google Scholar 

  133. Coda R, Melama L, Rizzello CG, Curiel JA, Sibakov J, Holopainen U, Pulkkinen M, Sozer N (2015) Effect of air classification and fermentation by Lactobacillus plantarum VTT-133328 on faba bean (Vicia Faba L.) flour nutritional properties. Int J Food Microbiol 193:34–42

    Article  CAS  PubMed  Google Scholar 

  134. De Pasquale I, Pontonio E, Gobbetti M, Rizzello CG (2020) Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int J Food Microbiol 316:108426

    Article  PubMed  Google Scholar 

  135. Rizzello CG, Calasso M, Campanella D, De Angelis M, Gobbetti M (2014) Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. Int J Food Microbiol 180:78–87

    Article  CAS  PubMed  Google Scholar 

  136. Granito M, Frias J, Doblado R, Guerra M, Champ M, Vidal-Valverde C (2002) Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur Food Res Technol 214:226–231

    Article  CAS  Google Scholar 

  137. Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M, Rizzello CG (2015) Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. Int J Food Microbiol 196:51–61

    Article  CAS  PubMed  Google Scholar 

  138. Starzyńska-Janiszewska A, Stodolak B (2011) Effect of inoculated lactic acid fermentation on antinutritional and antiradical properties of grass pea (Lathyrus sativus ‘Krab’) flour. Pol J Food Nutr Sci 61(4):245–249

    Article  Google Scholar 

  139. Hallén E, İbanoğlu Ş, Ainsworth P (2004) Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour. J Food Eng 63(2):177–184

    Article  Google Scholar 

  140. Montemurro M, Pontonio E, Gobbetti M, Rizzello CG (2019) Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol 302:47–58

    Article  CAS  PubMed  Google Scholar 

  141. Crépon K, Marget P, Peyronnet C, Carrouee B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop Res 115:329–339

    Article  Google Scholar 

  142. Pulkkinen M, Gautam M, Lampi AM, Ollilainen V, Stoddard F, Sontag-Strohm T, Salovaara H, Piironen V (2015) Determination of vicine and convicine from faba bean with an optimized high-performance liquid chromatographic method. Food Res Int 76:168–177

    Article  CAS  Google Scholar 

  143. Rizzello CG, Losito I, Facchini L, Katina K, Palmisano F, Gobbetti M, Coda R (2016) Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci Rep 6:32452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Verni M, De Mastro G, De Cillis F, Gobbetti M, Rizzello CG (2019) Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res Int 125:108571

    Article  CAS  PubMed  Google Scholar 

  145. Coda R, Kianjam M, Pontonio E, Verni M, Di Cagno R, Katina K, Rizzello CG, Gobbetti M (2017) Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications. Int J Food Microbiol 248:10–21

    Article  CAS  PubMed  Google Scholar 

  146. De Pasquale I, Verni M, Verardo V, Gómez-Caravaca AM, Rizzello CG (2021) Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods 10(1):182

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rizzello CG, Hernández-Ledesma B, Fernández-Tomé S, Curiel JA, Pinto D, Marzani B, Coda R, Gobbetti M (2015) Italian legumes: effect of sourdough fermentation on lunasin-like polypeptides. Microb Cell Fact 14(1):168

    Article  PubMed  PubMed Central  Google Scholar 

  148. Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int J Food Microbiol 137:236–245

    Article  CAS  PubMed  Google Scholar 

  149. Liao WC, Wang CY, Shyu YT, Yu RC, Ho KC (2013) Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J Funct Foods 5:1108–1115

    Article  CAS  Google Scholar 

  150. Limón RI, Peñas E, Torino MI, Martínez-Villaluenga C, Dueñas M, Frias J (2015) Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem 172:343–352

    Article  PubMed  Google Scholar 

  151. Coda R, Varis J, Verni M, Rizzello CG, Katina K (2017) Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT Food Sci Technol 82:296–302

    Article  CAS  Google Scholar 

  152. Naqash F, Gani A, Gani A, Masoodi FA (2017) Gluten-free baking: combating the challenges—a review. Trends Food Sci Technol 66:98–107

    Article  CAS  Google Scholar 

  153. Wang Y, Sorvali P, Laitila A, Maina NH, Coda R, Katina K (2018) Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocoll 84:396–405

    Article  CAS  Google Scholar 

  154. Bárcenas ME, Rosell CM (2005) Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocoll 19:1037–1043

    Article  Google Scholar 

  155. Biliaderis CG, Arvanitoyannis I, Izydorczyk MS, Prokopowich DJ (1997) Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch 49:278–283

    Article  CAS  Google Scholar 

  156. Galli V, Venturi M, Coda R, Maina NH, Granchi L (2020) Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res Int 138:109785

    Article  CAS  PubMed  Google Scholar 

  157. Bautista-Expósito S, Peñas E, Dueñas M, Silván JM, Frias J, Martínez-Villaluenga C (2018) Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chem 257:341–349

    Article  PubMed  Google Scholar 

  158. Dueñas M, Fernández D, Hernández T, Estrella I, Muñoz R (2005) Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric 85:297–304

    Article  Google Scholar 

  159. Gan RY, Shah NP, Wang MF, Lui WY, Corke H (2016) Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. J Food Sci Technol 51(4):875–884

    Article  CAS  Google Scholar 

  160. Filannino P, Di Cagno R, Gobbetti M (2018) Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol 49:64–72

    Article  CAS  PubMed  Google Scholar 

  161. Sanchez-Maldonado AF, Schieber A, Ganzle MG (2011) Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl Microbiol 111:1176–1184

    Article  CAS  PubMed  Google Scholar 

  162. Reveron I, Rivas B, Munoz R, Felipe F (2012) Genome-wide transcriptomic responses of a human isolate of Lactobacillus plantarum exposed to p-coumaric acid stress. Mol Nutr Food Res 56:1848–1859

    Article  CAS  PubMed  Google Scholar 

  163. Axel C, Zannini E, Arendt EK (2017) Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 57(16):3528–3542

    Article  CAS  PubMed  Google Scholar 

  164. Hoehnel A, Bez J, Sahin AW, Coffey A, Arendt EK, Zannini E (2020) Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein faba bean ingredients for bakery applications. Foods 9(11):1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bartkiene E, Krungleviciute V, Juodeikiene G, Vidmantiene D, Maknickiene Z (2015) Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J Sci Food Agric 95(6):1336–1342

    Article  CAS  PubMed  Google Scholar 

  166. Romero-Espinoza AM, Vintimilla-Alvarez MC, Briones-García M, Lazo-Vélez MA (2020) Effects of fermentation with probiotics on anti-nutritional factors and proximate composition of lupin (Lupinus mutabilis sweet). LWT 130:109658

    Article  CAS  Google Scholar 

  167. Rizzello CG, Verni M, Koivula H, Montemurro M, Seppa L, Kemell M, Katina K, Coda R, Gobbetti M (2017) Influence of fermented faba bean flour on the nutritional, technological and sensory quality of fortified pasta. Food Funct 8(2):860–871

    Article  CAS  PubMed  Google Scholar 

  168. **e C, Coda R, Chamlagain B, Edelmann M, Varmanen P, Piironen V, Katina K (2021) Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. LWT 137:110431

    Article  CAS  Google Scholar 

  169. Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, Frias J (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136:1030–1037

    Article  CAS  PubMed  Google Scholar 

  170. López-Barrios L, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Bioactive peptides and hydrolysates from pulses and their potential use as functional ingredients. J Food Sci 79:273–283

    Article  Google Scholar 

  171. Maleki S, Razavi SH (2020) Pulses germination and fermentation: Two bioprocessing against hypertension by releasing ACE inhibitory peptides. Crit Rev Food Sci Nutr 1–18

    Google Scholar 

  172. Bewley JD (2001) Seed germination and reserve mobilization. In: Encyclopedia of life sciences. Nature, London, UK

    Google Scholar 

  173. Koehler P, Hartmann G, Wieser H, Rychlik M (2007) Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J Agric Food Chem 55:4678–4683

    Article  CAS  PubMed  Google Scholar 

  174. Mäkinen OE, Arendt EK (2015) Nonbrewing applications of malted cereals, pseudocereals, and legumes: a review. J Am Soc Brew Chem 73:223–227

    Google Scholar 

  175. Katina K, Liukkonen KH, Kaukovirtanorja A, Adlercreutz H, Heinonen SM, Lampi AM, Pihlava JM, Poutanen K (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46:348–355

    Article  CAS  Google Scholar 

  176. Ariahu CC, Ukpabi U, Mbajunwa KO (1999) Production of African bread-fruit (Treculia africana) and soybean (Glycine max) seed based food formulations, 1: Effects of germination and fermentation on nutritional and organoleptic quality. Plant Foods Hum Nutr 54(3):193–206

    Article  CAS  PubMed  Google Scholar 

  177. Perri G, Coda R, Rizzello CG, Celano G, Ampollini M, Gobbetti M, De Angelis M, Calasso M (2021) Sourdough fermentation of whole and sprouted lentil flours: in situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem 355:129638

    Article  CAS  PubMed  Google Scholar 

  178. Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M (2008) Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 69(9):1919–1926

    Article  CAS  PubMed  Google Scholar 

  179. Bolívar-Monsalve J, Ceballos-González C, Ramírez-Toro C, Bolívar GA (2018) Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. J Food Process Pres 42(2):13495

    Article  Google Scholar 

  180. Gómez-Caravaca AM, Lafelice G, Verardo V, Marconi E, Fiorenza M (2014) Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chem 157:174–178

    Article  PubMed  Google Scholar 

  181. Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Jacobsen SE, Milovanovic M (2012) Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci 55:132–138

    Article  CAS  Google Scholar 

  182. Wolter A, Hager A, Zannini E, Czerny M, Arendt EK (2014) Influence of dextran-producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. Int J Food Microbiol 172:83–89

    Article  CAS  PubMed  Google Scholar 

  183. Jekle M, Houben A, Mitzscherling M, Becker T (2010) Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J Sci Food Agric 90(13):2326–2332

    Article  CAS  PubMed  Google Scholar 

  184. Olusegun OL (1983) Handbook of tropical foods. In: Harvey T, Chan Jr (eds) Food science and technology, 1st ed. Marcel Dekker, New York, pp 1–28

    Google Scholar 

  185. Caselato-Sousa VM, Amaya-Farfán J (2012) State of knowledge on amaranth grain: A comprehensive review. J Food Sci 77:93–104

    Article  Google Scholar 

  186. Nsimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106:760–766

    Article  Google Scholar 

  187. Silva-Sànchez C, Barba de la Rosa AP, Leòn-Galvàn MF, de Lumen BO, de Leòn-Rodriguez A, de Mejìa E (2008) Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240

    Article  PubMed  Google Scholar 

  188. Rizzello CG, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M (2009) Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 131(2-3):189–196

    Article  CAS  Google Scholar 

  189. Silva-Sànchez C, González-Castañeda J, De León-Rodríguez A, Barba de la Rosa AP (2004) Functional and rheological properties of amaranth albumins extracted from two Mexican varieties. Plant Foods Hum Nutr 59:169–174

    Article  PubMed  Google Scholar 

  190. Onyango C, Mewa EA, Mutahi AW, Okoth MW (2013) Effect of heat-moisture-treated cassava starch and amaranth malt on the quality of sorghum-cassava-amaranth bread. Afr J Food Sci 7:80–86

    Article  CAS  Google Scholar 

  191. Schoenlechner R, Mandala I, Kiskini A, Kostaropoulos A, Berghofer E (2010) Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. Int J Food Sci Technol 45:661–669

    Article  CAS  Google Scholar 

  192. Alvarez-Jubete L, Arendt EK, Gallagher E (2009) Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr 60:240–257

    Article  CAS  PubMed  Google Scholar 

  193. Li D, Li X, Ding X (2010) Composition and antioxidative properties of the flavonoid-rich fractions from tartary buckwheat grains. Food Sci Biotechnol 19:711–716

    Article  CAS  Google Scholar 

  194. Préstamo G, Pedrazuela A, Peñas E, Lasunción MA, Arroyo G (2003) Role of buckwheat diet on rats as prebiotic and healthy food. Nutr Res 23:803–814

    Article  Google Scholar 

  195. Fu XC, Wang MW, Li SP, Zhang Y, Wang HL (2005) Vasodilatation produced by orientin and its mechanism study. Biol Pharm Bull 28:37–41

    Article  CAS  PubMed  Google Scholar 

  196. Fusi F, Saponara S, Pessina F, Gorelli B, Sgaragli G (2003) Effects of quercetin and rutin on vascular preparations. A comparison between mechanical and electrophysiological phenomena. Eur J Nutr 42:10–17

    Article  CAS  PubMed  Google Scholar 

  197. Matsui T, Kudo A, Tokuda S (2010) Identification of a new natural vasorelaxant compound, (+)-osbeckic acid, from rutinfree tartary buckwheat extract. J Agric Food Chem 58:10876–10879

    Article  CAS  PubMed  Google Scholar 

  198. Aoyagi Y (2006) An angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour. Phytochemistry 67:618–621

    Article  CAS  PubMed  Google Scholar 

  199. Li SQ, Zhang QH (2001) Advances in the development of functional foods from buckwheat. Crit Rev Food Sci Nutr 41:451–464

    Article  CAS  PubMed  Google Scholar 

  200. Starowicz M, Koutsidis G, Zieliński H (2017) Sensory analysis and aroma compounds of buckwheat containing products—a review. Crit Rev Food Sci Nutr 58:1767–1779

    Article  PubMed  Google Scholar 

  201. Deferne JL, Pate DW (1996) Hemp seed oil: a source of valuable essential fatty acids. J Int Hemp Assoc 3:4–7

    Google Scholar 

  202. Da Porto C, Decorti D, Natolino A (2015) Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars. J Diet Suppl 12:1–10

    Article  PubMed  Google Scholar 

  203. House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hempseed (Cannabis sativa L.) products through the use of the protein digestibility corrected aminoacid score method. J Agric Food Chem 58:11801–11807

    Article  CAS  PubMed  Google Scholar 

  204. Russo R, Reggiani R (2015) Evaluation of protein concentration, amino acid profile and antinutritional compounds in hempseed meal from dioecious and monoecious varieties. Am J Plant Sci 6:14–22

    Article  Google Scholar 

  205. Dallagnol AM, Pescuma M, De Valdez GF, Rollán G (2013) Fermentation of quinoa and wheat slurries by Lactobacillus plantarum CRL 778: proteolytic activity. Appl Microbiol Biotechnol 97:3129–3140

    Article  CAS  PubMed  Google Scholar 

  206. Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y (2019) Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric 99(11):5239–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Castro-Alba V, Lazarte CE, Perez-Rea D, Sandberg AS, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y (2019) Effect of fermentation and dry roasting on the nutritional quality and sensory attributes of quinoa. Food Sci Nutr 7(12):3902–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rizzello CG, Lorusso A, Montemurro M, Gobbetti M (2016) Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiol 56:1–13

    Article  CAS  PubMed  Google Scholar 

  209. Jagelaviciute J, Cizeikiene D (2021) The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 137:110457

    Article  CAS  Google Scholar 

  210. Valerio F, Bavaro AR, Di Biase M, Lonigro SL, Logrieco AF, Lavermicocca P (2020) Effect of amaranth and quinoa flours on exopolysaccharide production and protein profile of liquid sourdough fermented by Weissella cibaria and Lactobacillus plantarum. Front Microbiol 11:967

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bavaro AR, Di Biase M, Conte A, Lonigro SL, Caputo L, Cedola A, Del Nobile MA, Logrieco AF, Lavermicocca P, Valerio F (2020) Weissella cibaria short-fermented liquid sourdoughs based on quinoa or amaranth flours as fat replacer in focaccia bread formulation. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14874

  212. Chiş MS, Păucean A, Man SM, Vodnar DC, Teleky BE, Pop CR, Stan L, Borsai O, Kadar CB, Urcan AC, Muste S (2020) Quinoa sourdough fermented with Lactobacillus plantarum ATCC 8014 designed for gluten-free muffins—A powerful tool to enhance bioactive compounds. Appl Sci 10(20):7140

    Article  Google Scholar 

  213. Rocchetti G, Miragoli F, Zacconi C, Lucini L, Rebecchi A (2019) Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res Int 119:886–894

    Article  CAS  PubMed  Google Scholar 

  214. Melini F, Melini V (2021) Impact of fermentation on phenolic compounds and antioxidant capacity of quinoa. Fermentation 7(1):20

    Article  CAS  Google Scholar 

  215. Cizeikiene D, Gaide I, Basinskiene L (2021) Effect of lactic acid fermentation on quinoa characteristics and quality of quinoa-wheat composite bread. Foods 10(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Rizzello CG, Lorusso A, Russo V, Pinto D, Marzani B, Gobbetti M (2017) Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. Int J Food Microbiol 241:252–261

    Article  CAS  PubMed  Google Scholar 

  217. Lorusso A, Verni M, Montemurro M, Coda R, Gobbetti M, Rizzello CG (2017) Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT Food Sci Technol 78:215–221

    Article  CAS  Google Scholar 

  218. Carrizo SL, de LeBlanc ADM, LeBlanc JG, Rollán GC (2020) Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Res Int 127:108735

    Article  CAS  PubMed  Google Scholar 

  219. Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136(1):75–82

    Article  CAS  PubMed  Google Scholar 

  220. Houben A, Götz H, Mitzscherling M, Becker T (2010) Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. J Cereal Sci 51(3):350–356

    Article  Google Scholar 

  221. Siwatch M, Yadav RB, Yadav BS (2019) Chemical, physicochemical, pasting and microstructural properties of amaranth (Amaranthus hypochondriacus) flour as affected by different processing treatments. Qual Assur Saf Crop Foods 11(1):3–13

    Article  CAS  Google Scholar 

  222. Venturi M, Galli V, Pini N, Guerrini S, Granchi L (2019) Use of selected lactobacilli to increase γ-aminobutyric acid (GABA) content in sourdough bread enriched with amaranth flour. Foods 8(6):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tovar-Pérez EG, Lugo-Radillo A, Aguilera-Aguirre S (2019) Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization. Food Rev Int 35(3):221–245

    Article  Google Scholar 

  224. Ayala-Niño A, Rodríguez-Serrano GM, Jiménez-Alvarado R, Bautista-Avila M, Sánchez-Franco JA, González-Olivares LG, Cepeda-Saez A (2019) Bioactivity of peptides released during lactic fermentation of amaranth proteins with potential cardiovascular protective effect: An in vitro study. J Med Food 22(10):976–981

    Article  PubMed  Google Scholar 

  225. Różyło R, Rudy S, Krzykowski A, Dziki D (2015) Novel application of freeze-dried amaranth sourdough in gluten-free bread production. J Food Process Eng 38(2):135–143

    Article  Google Scholar 

  226. Matejčeková Z, Liptáková D, Valík Ľ (2016) Evaluation of the potential of amaranth flour for lactic acid fermentation. J Pharm Nutr Sci 6:1–6

    Article  Google Scholar 

  227. Zieliński H, Szawara-Nowak D, Bączek N, Wronkowska M (2019) Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem 271:291–297

    Article  PubMed  Google Scholar 

  228. Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119:770–778

    Article  CAS  Google Scholar 

  229. Lin LY, Liu HM, Yu YW, Lin SD, Mau JL (2009) Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem 112:987–991

    Article  CAS  Google Scholar 

  230. Moroni AV, Zannini E, Sensidoni G, Arendt EK (2012) Exploitation of buckwheat sourdough for the production of wheat bread. Eur Food Res Technol 235(4):659–668

    Article  CAS  Google Scholar 

  231. Ciesarová Z, Basil E, Kukurová K, Marková L, Zieliński H, Wronkowska M (2016) Gluten-free muffins based on fermented and unfermented buckwheat flour-content of selected elements. J Food Nutr Res 55(2):108–113

    Google Scholar 

  232. Nakamura K, Naramoto K, Koyama M (2013) Blood-pressure-lowering effect of fermented buckwheat sprouts in spontaneously hypertensive rats. J Funct Foods 5(1):406–415

    Article  CAS  Google Scholar 

  233. Zieliński H, Honke J, Topolska J, Bączek N, Piskuła MK, Wiczkowski W, Wronkowska M (2020) ACE Inhibitory Properties and Phenolics Profile of Fermented Flours and of Baked and Digested Biscuits from Buckwheat. Foods 9(7):847

    Article  PubMed  PubMed Central  Google Scholar 

  234. Nionelli L, Montemurro M, Pontonio E, Verni M, Gobbetti M, Rizzello CG (2018) Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. Int J Food Microbiol 279:14–25

    Article  CAS  PubMed  Google Scholar 

  235. Nissen L, Bordoni A, Gianotti A (2020) Shift of volatile organic compounds (VOCs) in gluten-free hemp-enriched sourdough bread: A metabolomic approach. Nutrients 12(4):1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Schettino R, Pontonio E, Rizzello CG (2019) Use of fermented hemp, chickpea and milling by-products to improve the nutritional value of semolina pasta. Foods 8(12):604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pontonio E, Verni M, Dingeo C, Diaz-de-Cerio E, Pinto D, Rizzello CG (2020) Impact of enzymatic and microbial bioprocessing on antioxidant properties of hemp (Cannabis sativa L.). Antioxidants 9(12):1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bartkiene E, Schleining G, Krungleviciute V, Zadeike D, Zavistanaviciute P, Dimaite I, Kuzmaitea I, Riskeviciene V, Juodeikiene G (2016) Development and quality evaluation of lacto-fermented product based on hulled and not hulled hempseed (Cannabis sativa L.). LWT Food Sci Technol 72:544–551

    Article  CAS  Google Scholar 

  239. Kishino S, Ogawa J, Ando A, Yokozeki K, Shimizu S (2010) Microbial production of conjugated g-linolenic acid by Lactobacillus plantarum AKU 1009a. J Appl Microbiol 108:2012–2018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Giuseppe Rizzello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pontonio, E., Verni, M., Montemurro, M., Rizzello, C.G. (2023). Sourdough: A Tool for Non-conventional Fermentations and to Recover Side Streams. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-23084-4_9

Download citation

Publish with us

Policies and ethics

Navigation