The Role of Transcriptomics in Redefining Critical Illness

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2023

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1435 Accesses

Abstract

Transcriptomics is the study of all the RNA that makes up a tissue or cell, and offers a powerful way to unravel the highly heterogeneous syndromes that are encountered in critical care. Notably, the host response to sepsis is inundated with complexity, and has been subject to numerous investigations to determine the role of coding and non-coding RNAs. In the blood alone, RNAs undergo vast and dynamic regulatory changes as sepsis progresses, knowledge of which has significantly contributed to the understanding of the dysregulated pro- and anti-inflammatory responses. Despite better comprehension, the morbidity and mortality of these patients remains high. The inherent heterogeneity is proving to be difficult to grasp, and highlights a compelling need to improve, and potentially redefine the prevailing approach towards managing sepsis. This chapter provides an overview on how transcriptomics can facilitate progression towards better outcomes for critically ill patients, from understanding sepsis pathophysiology, to develo** host biomarkers for early detection, and deriving new enrichment strategies to welcome a more personalized approach to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Google Scholar 

  2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease study. Lancet. 2020;395:200–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49:e1063–143.

    Article  PubMed  Google Scholar 

  4. Maslove DM, Tang B, Shankar-Hari M, et al. Redefining critical illness. Nat Med. 2022;28:1141–8.

    Article  CAS  PubMed  Google Scholar 

  5. McLean AS, Shojaei M. Transcriptomics in the intensive care unit. Lancet Respir Med. 2022;10:824–6.

    Article  PubMed  Google Scholar 

  6. Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2020;16:20–31.

    Article  PubMed  Google Scholar 

  7. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.

    Article  PubMed  Google Scholar 

  8. Calvano S, **ao W, Richards R, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437:1032–7.

    Article  CAS  PubMed  Google Scholar 

  9. Talwar S, Munson P, Barb J, et al. Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans. Physiol Genomics. 2006;25:203–15.

    Article  PubMed  Google Scholar 

  10. Tang BM, Huang SJ, Mclean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care. 2010;14:R237.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4:259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maslove DM, Wong HR. Gene expression profiling in sepsis: timing, tissue and translational considerations. Trends Mol Med. 2014;20:204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol. 2022;13:951798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinn SR, O’Neill LA. A trio of microRNAs that control toll-like receptor signaling. Int Immunol. 2011;23:421–5.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng G, Pan M, ** W, ** G, Huang Y. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway. Int Immunopharmacol. 2017;45:6–12.

    Article  PubMed  Google Scholar 

  16. Hashemian SMH, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and exosomes: their role in the pathogenesis of sepsis. Mol Ther Nucl Acids. 2020;21:51–74.

    Article  CAS  Google Scholar 

  17. Liu T, Liu J, Tian C, Wang H, Wen M, Yan M. LncRNA THRIL is upregulated in sepsis and sponges miR-19a to upregulate TNF-α in human bronchial epithelial cells. J Inflamm. 2020;17:31.

    Article  Google Scholar 

  18. Wei L, Yang Y, Wang W, Xu R. Circular RNAs in the pathogenesis of sepsis and their clinical implications: a narrative review. Ann Acad Med. 2022;51:221–7.

    Google Scholar 

  19. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96.

    Article  PubMed  Google Scholar 

  20. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev. 2013;93:1247–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cajander S, Bäckman A, Tina E, Strålin K, Söderquist B, Källman. Preliminary results in quantitation of HLA-DRA by real-time PCR: a promising approach to identify immunosuppression in sepsis. Crit Care. 2013;17:R223.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma Y, Vilanova D, Atalar K, et al. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PLoS One. 2013;8:e75918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang W, Chen B, Chen W. LncRNA GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis inflammation, organ dysfunctions and mortality risk. J Clin Lab Anal. 2022;36:e24309.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang BM, Shojaei M, Parnell GP, et al. A novel immune biomarker IFI27 discriminates between influenza and bacteria in patients with suspected respiratory infection. Eur Respir J. 2017;49:1602098.

    Article  PubMed  Google Scholar 

  26. Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med. 2016;8:346ra91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miller RMI, Lopansri BK, Burke JP, et al. Validation of a host response assay, SeptiCyte LAB, for discriminating sepsis from systemic inflammatory response syndrome in the ICU. Am J Respir Crit Care Med. 2018;198:903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis R, Krupa N, van der Poll T, et al. SeptiCyte® RAPID in sepsis cases with malignancy or treated with antineoplastics/immunosuppressants. Crit Care Med. 2021;49:643 (abst).

    Google Scholar 

  29. Sweeney TE, Shidham A, Wong HR, Khatri PA. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med. 2015;7:287ra71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sweeney TE, Perumal TM, Henao R, et al. A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun. 2018;9:694.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wong H, Cvijanovich NZ, Anas N, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196:494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scicluna BP, Wiewel MA, van Vught LA, et al. Molecular biomarker to assist in diagnosing abdominal sepsis upon ICU admission. Am J Respir Crit Care Med. 2017;197:1070–3.

    Article  Google Scholar 

  33. He YD, Wohlford EM, Uhle F, Buturovic L, Liesenfeld O, Sweeney TE. The optimization and biological significance of a 29-host-immune-mRNA panel for the diagnosis of acute infections and sepsis. J Pers Med. 2021;11:735.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng X, Leunk KS, Wong MH, Cheng L. Long non-coding RNA pairs to assist in diagnosing sepsis. BMC Genomics. 2021;22:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.

    Article  PubMed  Google Scholar 

  36. Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180:640–8.

    Article  CAS  PubMed  Google Scholar 

  37. Leligdowicz A, Matthay MA. Heterogeneity in sepsis: new biological evidence with clinical applications. Crit Care. 2019;23:80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Antcliffe DB, Burnham KL, Al-Beidh F, et al. Transcriptomic signatures in sepsis and a differential response to steroids: from the VANISH randomized trial. Am J Respir Crit Care Med. 2018;199:980–6.

    Article  Google Scholar 

  39. Baghela A, Pena OM, Lee AH, et al. Predicting sepsis severity at first clinical presentation: the role of endotypes and mechanistic signatures. EBioMedicine. 2022;75:103776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reyes M, Filbin MR, Bhattacharyya RP, et al. An immune cell signature of bacterial sepsis. Nat Med. 2020;26:333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Pelaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelaia, T.M., Shojaei, M., McLean, A.S. (2023). The Role of Transcriptomics in Redefining Critical Illness. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2023. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-23005-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23005-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23004-2

  • Online ISBN: 978-3-031-23005-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation