Biosurfactants: Types, Sources, and Production

  • Chapter
  • First Online:
Advancements in Biosurfactants Research

Abstract

Biosurfactants are substances that are produced by microbes, such as yeast, bacteria, and fungi. Compared to chemical surfactants, biosurfactants offer numerous advantages, such as lower toxicity and better biodegradability. They can also be used in various environmental conditions, such as temperature, pH, and salinity. Due to these special qualities, their uses have grown in a variety of fields, such as the environment, healthcare, agriculture, and many other industries. Microbially derived biosurfactants and bioemulsifiers are effective substitutes for their chemical counterparts. The applicability of biosurfactants over chemical surfactants, different types, and sources of production of biosurfactants are the three key focuses of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 176.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari A, Kasprzyk A, Galvez R, Ghoshal S (2021) A rhamnolipid biosurfactant increased bacterial population size but hindered hydrocarbon biodegradation in weathered contaminated soils. Sci Total Environ 778:145441. https://doi.org/10.1016/j.scitotenv.2021.145441

    Article  CAS  Google Scholar 

  • Asmer H-J, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466

    Article  CAS  Google Scholar 

  • Ayed HB, Jemil N, Maalej H et al (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation 99:8–14

    Article  Google Scholar 

  • Bages-Estopa S, White DA, Winterburn JB, Webb C, Martin PJ (2018) Production and separation of a trehalolipid biosurfactant. Biochem Eng J 139:85–94

    Article  CAS  Google Scholar 

  • Banat IM, Carboue Q, Saucedo-Casta ̃neda G, de Jesús Cazares-Marinero J (2021) Biosurfactants: the green generation of speciality chemicals and potential production using solid-state fermentation (SSF) technology. Bioresour Technol 320:12422

    Article  Google Scholar 

  • Bezerra KGO, Rufino RD, Luna JM, Sarubbo LA (2018) Saponins and microbial biosurfactants: potential raw materials for the formulation of cosmetics. Biotechnol Prog 34:1482–1493

    Article  CAS  Google Scholar 

  • Bezerra KG, Gomes UV, Silva RO et al (2019) The potential application of biosurfactant produced by Pseudomonas aeruginosa TGC01 using crude glycerol on the enzymatic hydrolysis of lignocellulosic material. Biodegradation 30(4):351–361

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2015) Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem Eng J 101:168–178

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2017) The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chem Eng J 309:563–576

    Article  CAS  Google Scholar 

  • Borah D, Agarwal K, Khataniar A et al (2019) A newly isolated strain of Serratia sp. from an oil spillage site of Assam shows excellent bioremediation potential. 3 Biotech 9(7):283

    Article  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta Biomembr 1611(1–2):91–97

    Article  CAS  Google Scholar 

  • Cazals F, Huguenot D, Crampon M et al (2020) Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. Sci Total Environ 709:136143

    Article  CAS  Google Scholar 

  • Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31

    Article  CAS  Google Scholar 

  • Cruz JM, Hughes C, Quilty B, Montagnolli RN, Bidoia ED (2018) Agricultural feedstock supplemented with manganese for biosurfactant production by Bacillus subtilis. Waste Biomass Valoriz 9(613–8):34

    Google Scholar 

  • Da Rocha Junior RB, Meira HM, Almeida DG et al (2019) Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation 30(4):215–233

    Article  Google Scholar 

  • Datta P, Tiwari P, Pandey LM (2018) Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis mg495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresour Technol 270:439–448

    Article  CAS  Google Scholar 

  • Datta P, Tiwari P, Pandey LM (2020) Oil washing proficiency of biosurfactant produced by isolated Bacillus tequilensis MK 729017 from Assam reservoir soil. J Pet Sci Eng 195:107612

    Article  CAS  Google Scholar 

  • De S, Malik S, Ghosh A, Saha R, Saha B (2015) A review on natural surfactants. RSC Adv 5(81):65757–65767

    Article  CAS  Google Scholar 

  • Domínguez Rivera Á, Martínez Urbina MÁ, López y López VE (2019) Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 35:155

    Article  Google Scholar 

  • Durval IJB, Mendonça AHR, Rocha IV et al (2020) Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation. Mar Pollut Bull 157:111357

    Article  CAS  Google Scholar 

  • Ejike Ogbonna K, Victor Agu C, Okonkwo CC et al (2021a) Use of Spondias mombin fruit pulp as a substrate for biosurfactant production. Bioengineered 12(1):1–12

    Article  CAS  Google Scholar 

  • Ejike Ogbonna K, Victor Agu C, Okonkwo CC, TochukwuUghamba K, Akor J, Njoku OU (2021b) Use of Spondias Mombin fruit pulp as a substrate for biosurfactant production. Bioengineered. 12:1–12

    Article  CAS  Google Scholar 

  • El-Housseiny GS, Aboshanab KM, Aboulwafa MM, Hassouna NA (2019) Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. AMB Express 9(1):7

    Article  Google Scholar 

  • Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T (2022) Microbial biosurfactants: a review of recent environmental applications. Bioengineered 13(5):12365–12391

    Article  Google Scholar 

  • Farias CBB, Almeida FCG, Silva IA, Souza TC, Meira HM, Soares da Silva R d CF, Luna JM, Santos VA, Converti A, Banat IM, Sarubbo LA (2021) Production of green surfactants: market prospects. Electron J Biotechnol 51:28–39

    Article  CAS  Google Scholar 

  • Fontes GC, Ramos NM, Amaral PFF, Nele M, Coelho MAZ (2012) Renewable resources for biosurfactant production by Yarrowia lipolytica. Braz J Chem Eng 29(483–94):41

    Google Scholar 

  • Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N (2019) Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol 285:121314

    Article  CAS  Google Scholar 

  • Gaur VK, Bajaj A, Regar RK et al (2019a) Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour Technol 272:19–25

    Article  CAS  Google Scholar 

  • Gaur VK, Regar RK, Dhiman N et al (2019b) Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol 285:121314

    Article  CAS  Google Scholar 

  • Geudens N, Nasir MN, Crowet J, Raaijmakers JM, Feher K, Coenye T, Martins JC, Lins L, Sinnaeve D, Deleu M (2017) Membrane interactions of natural cyclic lipodepsipeptides of the viscosin group. BBA-Biomembranes 1859:331–339

    Article  CAS  Google Scholar 

  • Gurkok S (2021) Important parameters necessary in the bioreactor for the mass production of biosurfactants. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 347–365

    Google Scholar 

  • Huang X, Zhou H, Ni Q et al (2020) Biosurfactant-facilitated biodegradation of hydrophobic organic compounds in hydraulic fracturing flowback wastewater: a dose–effect analysis. Environ Technol Innov 19:100889

    Article  Google Scholar 

  • Jakinala P, Lingampally N, Kyama A et al (2019) Ecotoxicology and environmental safety enhancement of atrazine biodegradation by marine isolate Bacillus velezensisMHNK1 in presence of surfactin lipopeptide. Ecotoxicol Environ Saf 182:109372

    Article  CAS  Google Scholar 

  • Janek T, Rodrigues LR, Czyznikowska Z (2018) Study of metal-lipopeptide complexes and their self-assembly behavior, micelle formation, interaction with bovine serum albumin and biological properties. J Mol Liq 268:743–753

    Article  CAS  Google Scholar 

  • Janek T, Mironczuk AM, Rymowicz W, Dobrowolski A (2020) High-yield expression of extracellular lipase from Yarrowia lipolytica and its interactions with lipopeptide biosurfactants: a biophysical approach. Arch Biochem Biophys 689:108475

    Article  CAS  Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607. https://doi.org/10.1007/s12010-020-03246-5

    Article  CAS  Google Scholar 

  • Kretschner A, Block H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Applied Environ Microbiol 44:864–870

    Article  Google Scholar 

  • Lee DW, Lee H, Kwon BO et al (2018) Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ Pollut 241:254–264

    Article  CAS  Google Scholar 

  • Leonie A, SarubboMaria da Gloria C, SilvaItalo JB, DurvalKarenGercyane O, BezerraBeatriz G, RibeiroIvison A, SilvaMatthew S, Banat TIM (2022) Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J 181:108377

    Article  Google Scholar 

  • Liu Q, Niu J, Yu Y et al (2021) Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery. J Clean Prod 307:127193

    Article  CAS  Google Scholar 

  • Long X, He N, He Y et al (2017) Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresour Technol 241:200–206

    Article  CAS  Google Scholar 

  • Luna JM, Rufino RD, Jara AMA et al (2015) Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids Surf A Physicochem Eng Asp 480:413–418

    Article  CAS  Google Scholar 

  • Machado TS, Decesaro A, Cappellaro AC et al (2020) Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil. Ecotoxicol Environ Saf 201:110798

    Article  CAS  Google Scholar 

  • Markets and Markets (2017). Available at https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html. Accessed 8 Mar 2018

  • Marques NSAA, Silva IG, Cavalcanti DL, Maia PCSV, Santos VP, Andrade RFS et al (2020) Eco-friendly bioemulsifier production by Mucor circinelloides UCP0001 isolated from mangrove sediments using renewable substrates for environmental applications. Biomol Ther 10:365

    CAS  Google Scholar 

  • Martins CP, Martins GV (2018) Biosurfactant production from industrial wastes with potential remove of insoluble paint. Int Biodeterior Biodegrad 127:10–16

    Article  CAS  Google Scholar 

  • McClements DJ, Gumus CE (2016) Natural emulsifiers—biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interf Sci 234:3–26

    Article  CAS  Google Scholar 

  • Naughton PJ, Marchant R, Naughton V, Banat IM (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28

    Article  CAS  Google Scholar 

  • Nikolova C, Gutierrez T (2021) Biosurfactants and their applications in the oil and gas industry: current state of knowledge and future perspectives. Front Bioeng Biotechnol 9:15

    Article  Google Scholar 

  • Nurfarahin A, Mohamed M, Phang L (2018) Culture medium development for microbial derived surfactants production—an overview. Molecules 23:1049

    Article  Google Scholar 

  • Paściak M, Sanchez-Carballo P, Duda-Madej A, Lindner B, Gamian A, Holst O (2010) Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae. Carbohydr Res 345(10):1497–1503

    Article  Google Scholar 

  • Patowary R, Patowary K, Kalita MC et al (2016) Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Appl Biochem Biotechnol 180(3):383–399

    Article  CAS  Google Scholar 

  • Patowary R, Patowary K, Kalita MC et al (2018) Application of biosurfactant for enhancement of bioremediation BIOENGINEERED 12389 process of crude oil contaminated soil. Int Biodeter Biodegr 129:50–60

    Article  CAS  Google Scholar 

  • Peele KA, Ch VRT, Kodali VP (2016) Emulsifying activity of a biosurfactant produced by a marine bacterium. 3 Biotech 6(2):177

    Article  Google Scholar 

  • Pele MA, Ribeaux DR, Vieira ER et al (2019) Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J Biotechnol 38:40–48

    Article  CAS  Google Scholar 

  • Pi Y, Bao M, Liu Y et al (2017) The contribution of chemical dispersants and biosurfactants on crude oil biodegradation by Pseudomonas sp. LSH-7′. J Clean Prod 153:74–82

    Article  CAS  Google Scholar 

  • Pradhan AK, Rath A, Pradhan N et al (2018) Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity. 3 Biotech 8(6):261

    Article  Google Scholar 

  • Prakash AA, Prabhu NS, Rajasekar A et al (2021) Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant. J Hazard Mater 405:124061

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18(6):1277–1281

    Article  CAS  Google Scholar 

  • Rebello S, Asok AK, Mundayoor S, Jisha MS (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12:275–287

    Article  CAS  Google Scholar 

  • Reddy KS, Khan MY, Archana K et al (2016) Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour Technol 221:291–299

    Article  Google Scholar 

  • Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175215

    Google Scholar 

  • Rehn HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216

    Google Scholar 

  • Rocha e Silva NMP, Meira HM, Almeida FCG, da Silva R d CFS, Almeida DG, Luna JM, Rufino RD, Saantos VA, Sarubbo LA (2019) Natural surfactants, and their applications for heavy oil removal in industry. Sep Purif Rev 48:267–281

    Article  CAS  Google Scholar 

  • Rodríguez A, Gea T, Font X (2021) Sophorolipids production from oil cake by solid-state fermentation. Inventory for economic and environmental assessment. Front Chem Eng 3:632752

    Article  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gulnick DL (1979) Emulsifier of Arthrobacter RAG-I: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    Article  CAS  Google Scholar 

  • Sahebnazar Z, Mowla D, Karimi G et al (2018) Zero-valent iron nanoparticles assisted purification of rhamnolipid for oil recovery improvement from oily sludge. J Environ Chem Eng 6(1):917–922

    Article  CAS  Google Scholar 

  • Sajid M, Khan MSA, Cameotra SS, Al-Thubiani AS (2020) Biosurfactants: potential applications as immunomodulator drugs. Immunol Lett 223:71–77

    Article  CAS  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD et al (2015) Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol 191:133–139

    Article  CAS  Google Scholar 

  • Sałek K, Euston SR (2019) Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem 85:143–155

    Article  Google Scholar 

  • Sánchez A, Artola A, Gea T et al (2015) A new paradigm for waste management of organic materials. Waste Manag 42:1–2

    Article  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401

    Article  Google Scholar 

  • Schultz J, Rosado AS (2020) Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24:189–206

    Article  CAS  Google Scholar 

  • Sharma R, Singh J, Verma N (2018a) Optimization of rhamnolipid production from Pseudomonas aeruginosa PBS towards application for microbial enhanced oil recovery. 3. Biotech 8(1):1–15

    Google Scholar 

  • Sharma R, Singh J, Verma N (2018b) Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal Agric Biotechnol 16:132–139

    Article  Google Scholar 

  • Sharma J, Sundar D, Srivastava P (2021) Biosurfactants: potential agents for controlling cellular communication, motility, and antagonism. Front Mol Biosci 8

    Google Scholar 

  • Silva R, Almeida D, Rufino R, Luna J, Santos V, Sarubbo L (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542. https://doi.org/10.3390/ijms150712523

    Article  CAS  Google Scholar 

  • Silva EJ, Correa PF, Almeida DG et al (2018) Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation. Colloids Surf B: Biointerfaces 172:127–135

    Article  CAS  Google Scholar 

  • Sun S, Wang Y, Zang T et al (2019) A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour Technol 281:421–428

    Article  CAS  Google Scholar 

  • Teixeira-Souza KS, Gudiña EJ, Schwan RF et al (2018) Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. J Hazard Mater 346:152–158

    Article  CAS  Google Scholar 

  • Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51:3036

    Article  Google Scholar 

  • The 360 research reports. https://www.360researchreports.com/globalbiosurfact ants-market-17043331. Accessed 23 Apr 2021

  • Tian W, Yao J, Liu R et al (2016) Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains. Ecotoxicol Environ Saf 129:171–179

    Article  CAS  Google Scholar 

  • Tomar S, Lai M, Khan MA et al (2019) Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa PA 1 and its efficacy against Phytophtora infestans. Environ Biol 40(4):725–730

    Article  CAS  Google Scholar 

  • Tripathy DB, Mishra A (2011) Sustainable biosurfactants. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, Hoboken, pp 1–11

    Google Scholar 

  • Vallejo CM, Restrepo MAF, Duque FLG, Díaz JCQ (2021) Production, characterization and kinetic model of biosurfactant produced by lactic acid bacteria. Electron J Biotechnol 53:14. https://doi.org/10.1016/j.ejbt.2021.06.001

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397

    Article  CAS  Google Scholar 

  • Wongsirichot P, Ingham B, Winterburn J (2021) A review of sophorolipid production from alternative feedstocks for the development of a localized selection strategy. J Clean Prod 319:128727

    Article  CAS  Google Scholar 

  • Wu J-Y, Yeh K-L, Lu W-B, Lin C-L, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164

    Article  CAS  Google Scholar 

  • Xu Q, Nakajima M, Kiu Z, Shiina T (2011) Biosurfactants for microbubble preparation and application. Int J Mol Sci 12:462–475

    Article  CAS  Google Scholar 

  • Zhu L, Yang X, Xue C, Chen Y, Qu L, Lu W (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage controlled fed-batch fermentation process. Bioresour Technol 117:208–213

    Article  CAS  Google Scholar 

  • Zouari O, Lecouturier D, Rochex A et al (2019) Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation 30(4):259–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, R., Mobin, M., Zehra, S., Aslam, J. (2023). Biosurfactants: Types, Sources, and Production. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_1

Download citation

Publish with us

Policies and ethics

Navigation