Abstract

In an increasingly electrified, technology-driven world, power electronics is central to the entire clean energy manufacturing economy. Power switching semiconductor devices are key enablers in a wide range of power applications, including novel lighting technologies, automotive and rail traction, on board chargers, consumer electronics, aerospace, photovoltaic, flexible alternative current transmission systems, high-voltage DC systems, microgrids, energy storage, motor drives, UPS, and data centers. Silicon power devices have dominated power electronics due to their low-cost volume production, excellent starting material quality, ease of processing, and proven reliability and ruggedness. Although Si power devices continue to make progress, they are approaching their operational limits primarily due to their poor high-temperature performance and their relatively low bandgap and critical electric field, which result in high conduction and switching losses. Wide bandgap (WBG) SiC and GaN power semiconductor devices have recently emerged as highly efficient alternatives to their venerable MOSFET and IGBT Si counterparts. With smaller form factor, reduced cooling requirements, and established reliability, WBG devices are cost-effective silicon replacements at the system level while allowing for novel circuit architectures and simplification. In particular, as environmental awareness and a worldwide push for a zero emissions economy gain prominence, the energy efficiency offered by WBG solutions is a strong driver in their wide market acceptance and mass commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 63.29
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 89.66
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. X. She, A.Q. Huang, O. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Indus. Electron 64(10), 8193–8204 (2017)

    Article  Google Scholar 

  2. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, R. Nadim Chowdhury, C.D. Chu, M.M.D. Santi, S. Souza, L.D. Decoutere, B.E. Cioccio, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, D. Thomas Heckel, P. Hemakumara, J. Houston, M. Hu, Q. Hua, A. Huang, S.J. Huang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, T. Stephen Oliver, D. Palacios, M. Piedra, R. Plissonnier, M. Reddy, I. Sun, A.T. Thayne, V. Nicola Trivellin, M.J. Unni, M.V. Uren, D.J. Hove, J. Wallis, J. Wang, S. **e, S.Y. Yagi, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Y. Zhang, The 2018 GaN power electronics roadmap. J. Phys D. Appl. Phys 51(16), 163001 (2018). https://doi.org/10.1088/1361-6463/aaaf9d

    Article  Google Scholar 

  3. N. Camara, K. Zekentes, L.P. Romanov, A.V. Kirillov, M.S. Boltovets, K.V. Vassilevski, G. Haddad, Microwave p-i-n diodes and switches based on 4H-SiC. IEEE EDL 27, 108–110 (2006). https://doi.org/10.1109/led.2005.862686

    Article  Google Scholar 

  4. K.V. Vassilevski, A.V. Zorenko, K. Zekentes, X-band Silicon Carbide IMPATT oscillator. MRS Online Proc. Lib 680, 1011 (2001). https://doi.org/10.1557/PROC-680-E10.11

    Article  Google Scholar 

  5. K.V. Vassilevski, A.V. Zorenko, K. Zekentes, Experimental observation of microwave oscillations produced by pulsed silicon carbide IMPATT diode. Electron. Lett 37(7), 466–467 (2001). https://doi.org/10.1049/el:20010285

    Article  Google Scholar 

  6. M. Arai, S. Ono, C. Kimura, IMPATT oscillation in SiC p+-n-n+ diodes with a guard ring formed by vanadium ion implantation. Electron. Lett 40, 1026 (2004). https://doi.org/10.1049/el:20045312

    Article  Google Scholar 

  7. K.V. Vassilevski, K. Zekentes, A.V. Zorenko, L.P. Romanov, Experimental determination of electron drift velocity in 4H-SiC p+-n-n+ avalanche diodes. IEEE EDL 21, 485–487 (2000). https://doi.org/10.1109/55.870609

    Article  Google Scholar 

  8. P.A. Ivanov, A.S. Potapov, T.P. Samsonova, I.V. Grekhov, Current–voltage characteristics of high-voltage 4H-SiC p+–n0–n+ diodes in the avalanche breakdown mode. Semiconductors 51, 374–378 (2017). https://doi.org/10.1134/s1063782617030095

    Article  Google Scholar 

  9. K. Vassilevski, Silicon carbide diodes for microwave applications. Int J. High Speed Electron. Syst. 15(04), 899–930 (2005). https://doi.org/10.1142/s0129156405003454

    Article  Google Scholar 

  10. A. Salemi, Silicon carbide technology for high- and ultra-high-voltage bipolar junction transistors and PiN diodes, PhD dissertation, KTH, Sweden, 2017

    Google Scholar 

  11. T. Tsuji, A. Kinoshita, N. Iwamuro, K. Fukuda, K. Tezuka, T. Tsuyuki, H. Kimura, Experimental demonstration of 1200V SiC-SBDs with lower forward voltage drop at high temperature. Mater. Sci. Forum 717, 917–920 (2012)

    Article  Google Scholar 

  12. C.E. Weitzel, J.W. Palmour, C.H. Carter, K. Moore, K.K. Nordquist, S. Allen, C. Thero, M. Bhatnagar, Silicon carbide high-power devices. IEEE Trans. Electron Dev 43(10), 1732–1741 (1996)

    Article  Google Scholar 

  13. G. Chen, S. Bai, A. Liu, L. Wang, R.H. Huang, Y.H. Tao, Y. Li, Fabrication and application of 1.7 KV SiC-Schottky diodes. Mater. Sci. Forum 821, 579–582 (2015)

    Article  Google Scholar 

  14. Q. Wahab, T. Kimoto, A. Ellison, C. Hallin, M. Tuominen, R. Yakimova, A. Henry, J.P. Bergman, E. Janzen, A 3 kV Schottky barrier diode in 4H-SiC. Appl. Phys. Lett 72(4), 445–447 (1998)

    Article  Google Scholar 

  15. K. Vassilevski, I. Nikitina, A. Horsfall, N. Wright, C.M. Johnson, 4.6 kV, 10.5 mOhm.cm2 Nickel Silicide Schottky diodes on commercial 4H-SiC Epitaxial Wafers. Mater. Sci. Forum 645-648, 897 (2010)

    Article  Google Scholar 

  16. R. Singh, J.A. Cooper, M.R. Melloch, T.P. Chow, J.W. Palmour, SiC power Schottky and PiN diodes. IEEE Trans. Electron Dev 49(4), 665–672 (2002) vol. 49(12), pp. 2308–2316, 2002

    Article  Google Scholar 

  17. K. Vassilevski, I.P. Nikitina, A.B. Horsfall, N.G. Wright, K.P. Hilton, A.G. Munday, A.J. Hydes, M.J. Uren, C.M. Johnson, et al., High voltage silicon Carbide Schottky diodes with single zone junction termination extension. Mater. Sci. Forum 556, 873–876 (2007)

    Article  Google Scholar 

  18. J.H. Zhao, P. Alexandrov, X. Li, Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes. IEEE Electron Dev. Lett 24(6), 402–404 (2003)

    Article  Google Scholar 

  19. F. Roccaforte, G. Brezeanu, P. Gammon, F. Giannazzo, S. Rascunà, M. Saggio, Schottky contacts to silicon carbide: Physics, technology and applications, in Advancing Silicon Carbide Electronics Technology, I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications, (Materials Research Forum LLC, 2018) ISSN 2471-8890 (Print) ISSN 2471-8904 (Online)

    Google Scholar 

  20. D. Stephani, Status, prospects and commercialization of SiC power devices. Device research conference. Conference digest (Cat. No.01TH8561), p. 14, 2001. https://doi.org/10.1109/DRC.2001.937852

  21. B.M. Wilamowski, Schottky diodes with high breakdown voltages. Solid-State Electron 26(5), 491–493 (1983). https://doi.org/10.1016/0038-1101(83)90106-5

    Article  Google Scholar 

  22. K. Tone, J.H. Zhao, M. Weiner, M. Pan, Fabrication and testing of 1,000 V - 60 A 4H-SiC MPS diodes in an inductive half-bridge circuit. Mater. Sci. Forum 338-342, 1187–1190 (2000). https://doi.org/10.4028/www.scientific.net/msf.338-342.1187

    Article  Google Scholar 

  23. Toshiba Corp, Improved JBS structure to reduce the leakage current and increase the surge current capability. https://toshiba.semicon-storage.com/eu/semiconductor/product/diodes/sic-schottky-barrier-diodes/articles/improved-jbs-structure-to-reduce-the-leakage-current-and-increase-the-surge-current-capability.html

  24. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley, 2014)

    Book  Google Scholar 

  25. Y. Jiang, W. Sung, X. Song, H. Ke, S. Liu, B.J. Baliga, A.Q. Huang, E. Van Brunt, 10 kV SiC MPS diodes for high temperature applications. 28th Int. symposium on power semiconductor devices and ICs (ISPSD), pp. 43–46, 2016. https://doi.org/10.1109/ispsd.2016.7520773

  26. F. Dahlquist, C.M. Zetterling, Mikael Östling, and K Rottner., Junction barrier Schottky diodes in 4H-SiC and 6H-SiC. Mater. Sci. Forum 264, 1061–1064 (1998)

    Article  Google Scholar 

  27. T. Yamamoto, J. Kojima, T. Endo, E. Okuno, T. Sakakibara, S. Onda, 1200-V JBS diodes with low threshold voltage and low leakage current. Mater. Sci. Forum 600, 939–942 (2009)

    Google Scholar 

  28. N. Ren, J. Wang, K. Sheng, Design and experimental study of 4H-SiC trenched junction barrier Schottky diodes. IEEE Trans. Electron Dev 61(7), 2459–2465 (2014)

    Article  Google Scholar 

  29. F. Dahlquist, J.O. Svedberg, C.M. Zetterling, M. Östling, B. Breitholtz, H. Lendenmann, A 2.8 kV, forward drop JBS diode with low leakage. Mater. Sci. Forum 338, 1179–1182 (2000)

    Article  Google Scholar 

  30. J. Hu, L.X. Li, P. Alexandrov, X.H. Wang, J.H. Zhao, 5 kV, 9.5 A SiC JBS diodes with non-uniform Guard Ring Edge termination for high power switching application. Mat. Sci. Forum 600, 947–950 (2009)

    Google Scholar 

  31. R.H. Huang, G. Chen, S. Bai, R. Li, Y. Li, Y. Hong Tao, Simulation, fabrication and characterization of 4500V 4H-SiC JBS diode. Mater. Sci. Forum 778, 800–803 (2014)

    Article  Google Scholar 

  32. B.A. Hull, J.J. Sumakeris, Q.J. Zhang, J. Richmond, A.R. Powell, M.J. Paisley, V.F. Tsvetkov, A. Hefner, A. Rivera, et al., Development of large area (up to 1.5 cm2) 4H-SiC 10 kV junction barrier Schottky rectifiers. Mater. Sci. Forum 600, 931–934 (2009)

    Google Scholar 

  33. Information on https://www.genesicsemi.com

  34. O. Kordina, C. Hallin, R.C. Glass, E. Janzen, A novel hot-wall CVD reactor for SiC epitaxy. Inst. Phys. Conf. Ser. 137, 41–44 (1994)

    Google Scholar 

  35. P. Grivickas, A. Galeckas, J. Linnros, M. Syväjärvi, R. Yakimova, V. Grivickas, J.A. Tellefsen, Carrier lifetime investigation in 4H–SiC grown by CVD and sublimation epitaxy. Mater. Sci. Semiconduct. Proc 4, 191 (2001). https://doi.org/10.1016/s1369-8001(00)00133-5

    Article  Google Scholar 

  36. L. Storasta, H. Tsuchida, Reduction of traps and improvement of carrier lifetime in 4H-SiC epilayers by ion implantation. Appl. Phys. Lett 90(6), 062116 (2007). https://doi.org/10.1063/1.2472530

    Article  Google Scholar 

  37. T. Hiyoshi, T. Kimoto, Reduction of deep levels and improvement of carrier lifetime in n-Type 4H-SiC by thermal oxidation. Appl. Phys. Exp 2, 041101 (2009). https://doi.org/10.1143/apex.2.041101

    Article  Google Scholar 

  38. S.H. Ryu, D.J. Lichtenwalner, M. O’Loughlin, C. Capell, J. Richmond, E. van Brunt, C. Jonas, Y. Lemma, A. Burk, B. Hull, M. McCain, S. Sabri, H. O'Brien, A. Ogunniyi, A. Lelis, J. Casady, D. Grider, S. Allen, J.W. Palmour, 15 kV n-GTOs in 4H-SiC. Mater. Sci. Forum 963, 651–654 (2019). https://doi.org/10.4028/www.scientific.net/MSF.963.651

    Article  Google Scholar 

  39. H. Lendenmann, F. Dahlquist, N. Johansson, R. Söderholm, P.Å. Nilsson, P. Bergman, P. Skytt, Long term operation of 4.5 kV PiN and 2.5 kV JBS diodes. Mater. Sci. Forum 353-356, 727–730 (2001). https://doi.org/10.4028/www.scientific.net/msf.353-356.727

    Article  Google Scholar 

  40. N. Camara, A. Thuaire, E. Bano, K. Zekentes, Forward-bias degradation in 4H-SiC p+nn+ diodes: Influence of the mesa etching. Phys. State Sol. (a) 202(4), 660–664 (2005)

    Article  Google Scholar 

  41. T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, K. Arai, Influence of growth conditions on basal plane dislocation in 4H-SiC epitaxial layer. J. Cryst. Growth 271, 1–7 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.044

    Article  Google Scholar 

  42. J.J. Sumakeris, J.R. Jenny, A.R. Powell, Bulk crystal growth, epitaxy, and defect reduction in silicon carbide materials for microwave and power devices. MRS Bullet 30(4), 280–286 (2005). https://doi.org/10.1557/mrs2005.74

    Article  Google Scholar 

  43. J.J. Sumakeris, P. Bergman, M.K. Das, C. Hallin, B.A. Hull, E. Janzén, H. Lendenmann, M.J. O'Loughlin, M.J. Paisley, S.Y. Ha, M. Skowronski, J.W. Palmour, C.H. Carter Jr., Techniques for minimizing the basal plane dislocation density in SiC epilayers to reduce Vf drift in SiC bipolar power devices. Mater. Sci. Forum 527-529, 141–146 (2006). https://doi.org/10.4028/www.scientific.net/msf.527-529.141

    Article  Google Scholar 

  44. W. Chen, M.A. Capano, Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles. J. Appl. Phys 98(11), 114907 (2005). https://doi.org/10.1063/1.2137442

    Article  Google Scholar 

  45. Y. Bu, H. Yoshimoto, N. Watanabe, A. Shima, Fabrication of 4H-SiC PiN diodes without bipolar degradation by improved device processes. J. Appl. Phys 122(24), 244504 (2017). https://doi.org/10.1063/1.5001370

    Article  Google Scholar 

  46. H. Niwa, J. Suda, T. Kimoto, 21.7 kV 4H-SiC PiN diode with a space-modulated junction termination extension. Appl. Phys. Exp 5, 064001 (2012). https://doi.org/10.1143/apex.5.064001

    Article  Google Scholar 

  47. B.J. Baliga, Power Semiconductor Devices (PWS Publishing Company, 1996)

    Google Scholar 

  48. D.C. Sheridan, G. Niu, J.N. Merrett, J.D. Cressler, C. Ellis, C.C. Tin, Design and fabrication of planar guard ring termination for high- voltage SiC diodes. Solid State Electron. 44(8), 1367–1372 (2000)

    Article  Google Scholar 

  49. M.C. Tarplee, V.P. Madangarli, Q. Zhang, S. Sudardhan, De- sign rules for field plate edge termination in SiC Schottky diodes. IEEE Trans. Electron. Dev 48(12), 2659–2664 (2001)

    Article  Google Scholar 

  50. T. Hiyoshi, T. Hori, J. Suda, T. Kimoto, Simulation and experimental study on the junction termination structures for high voltage 4H-SiC pin diodes. IEEE Trans. Electron Dev 55(8), 1841–1846 (2008)

    Article  Google Scholar 

  51. W. Sung, J. Baliga, A.Q. Huang, Area-efficient bevel-edge termination techniques for SiC high-voltage devices. IEEE Trans. Electron. Dev 63(4), 1630–1636 (2016)

    Article  Google Scholar 

  52. J. Bardeen, W.H. Brattain, The transistor, a semi-conductor triode. Phys. Rev 74(2), 230 (1948)

    Article  Google Scholar 

  53. B. Jayant, Baliga., Power Semiconductor Devices (PWS Publishing Company, 1996)

    Google Scholar 

  54. W.V. Muench et al., Silicon carbide filed-effect and bipolar transistors. IEEE electron devices meeting, 1977 international, volume 23, pages 337–339. IEEE, 1977

    Google Scholar 

  55. S.H. Ryu, A.K. Agarwal, J.W. Palmour, M.E. Levinshtein, 1.8 kV, 3.8 A bipolar junction transistors in 4H-SiC. IEEE 13th international symposium on power semiconductor devices & IC’s (ISPSD). IEEE, p. 37–40, 2001

    Google Scholar 

  56. Y. Gao, A.Q. Huang, A.K. Agarwal, Q. Zhang, Theoretical and experimental analyses of safe operating area (soa) of 1200-V 4H-SiC BJT. IEEE Trans. Electron Dev 55(8), 1887–1893 (2008)

    Article  Google Scholar 

  57. J.W. Palmour, Silicon carbide power device development for industrial markets. IEEE international electron devices meeting, pages 1–1. IEEE, 2014

    Google Scholar 

  58. A. Salemi, H. Elahipanah, G. Malm, C.M. Zetterling, M. Östling, Area-and efficiency-optimized junction termination for a 5.6 kV SiC BJT process with low ON-resistance, in Proc. 27th ISPSD, (2015), pp. 249–252

    Google Scholar 

  59. H. Elahipanah, A. Salemi, C.M. Zetterling, M. Östling, 5.8-kV implantation-Free 4H-SiC BJT with multiple-Shallow-Trench junction termination extension. IEEE Electron Dev. Lett. 36(2), 168–170 (2015)

    Article  Google Scholar 

  60. A. Salemi, H. Elahipanah, K. Jacobs, C.M. Zetterling, M. Östling, 15 kV-class implantation-free 4H-SiC BJTs with record high current gain. IEEE Electron Dev. Lett. 39(1), 63–66 (2018)

    Article  Google Scholar 

  61. E. Danielsson, M. Domeij, H.S. Lee, C.M. Zetterling, M. Östling, A. Schöner, C. Hallin, A 4H-SiC BJT with an epitaxially regrown extrinsic base layer. Mater. Sci. Forum 483-485, 905–908 (2005)

    Article  Google Scholar 

  62. Q. Zhang, A. Burk, F. Husna, R. Callanan, A. Agarwal, J. Palmour, R. Stahlbush, C. Scozzie, 4H-SiC bipolar junction transistors: From research to development-a case study: 1200 V, 20 A, stable SiC BJTs with high blocking yield. 21st international symposium on power semiconductor devices & IC’s IEEE, pp. 339–342, 2009

    Google Scholar 

  63. S.G. Sundaresan, S. Jeliazkov, B. Grummel, R. Singh, Rapidly maturing SiC junction transistors featuring current gain (β)> 130, blocking voltages up to 2700 V and stable long-term operation. Mater. Sci. Forum 778, 780 (2014)

    Google Scholar 

  64. C.F. Huang, J.A. Cooper, 4H-SiC npn bipolar junction transistors VWith BV CEO > 3,200 V. Proc. 14th international symposium on power semiconductor devices and ICs, IEEE, pp. 57–60, 2002

    Google Scholar 

  65. S. Balachandran, C. Li, P.A. Losee, I.B. Bhat, T.P. Chow, 6kV 4H-SiC BJTs with specific on-resistance below the unipolar limit using a selectively grown base contact process. Proc. 19th international symposium on power semiconductor devices and IC’s IEEE, pp. 293–296, 2007

    Google Scholar 

  66. S. Sundaresan, C. Li, P.A. Losee, I.B. Bhat, T.P. Chow, 10 kV SiC BJTs static, switching and reliability characteristics. 25th international symposium on power semiconductor devices & IC’s IEEE (ISPSD), pp. 303–306, 2013

    Google Scholar 

  67. H. Miyake, T. Okuda, H. Niwa, T. Kimoto, J. Suda, 21-kV SiC BJTs with space-modulated junction termination extensioN. IEEE Electron Dev. Lett 33(11), 1598–1600 (2012)

    Article  Google Scholar 

  68. H. Elahipanah, S. Kargarrazi, A. Salemi, C.M. Zetterling, M. Östling, 500 °C high current 4H-SiC lateral BJTs for high-temperature integrated circuits. IEEE Electron Dev. Lett 38(10), 1429–1432 (2017)

    Article  Google Scholar 

  69. M.W. Hussain, H. Elahipanah, J.E. Zumbro, S. Rodriguez, B.G. Malm, H.A. Mantooth, A. Rusu, A SiC BJT-based negative resistance oscillator for high-temperature applications. IEEE J. Electron Dev. Soc 7 (2019)

    Google Scholar 

  70. Silicon Carbide Bipolar Junction Transistor. 22nd European conference on power electronics and applications (EPE'20 ECCE Europe), 2020

    Google Scholar 

  71. H. Mitlehner, W. Bartsch, K.O. Dohnke, P. Friedrichs, R. Kaltschmidt, U. Weinert, B. Weis, D. Stephani, Dynamic characteristics of high voltage 4H-SiC vertical JFETs. Presented at the 11th international symposium on power semiconductor devices and ICs, ISPSD'99 proceedings, 1999

    Google Scholar 

  72. D. Stephani, P. Friedrichs, Silicon carbide junction field effect transistors. Int. J. High Speed Electron. Syst 16(3), 825–854 (2006)

    Article  Google Scholar 

  73. S.-H. Ryu, S. Krishnaswami, B.A. Hull, B. Heath, F. Husna, J. Richmond, A. Agarwal, J. Palmour, J. Scofield, A comparison of high temperature performance of SiC DMOSFETs and JFETs. Mater. Sci. Forum 556-557, 775–778 (2007)

    Article  Google Scholar 

  74. J.H. Zhao, K. Tone, X. Li, P. Alexandrov, L. Fursin, M. Weiner, 3.6 mΩ cm2, 1726V 4H-SiC normally-off trenched and-implanted vertical JFETs and circuit applications. IEE Proc.-Circuits Dev. Syst. 151(3), 231–237 (2004)

    Article  Google Scholar 

  75. V. Veliadis, Silicon carbide junction field effect transistors (SiC – JFETs), in Wiley Encyclopedia of Electrical and Electronics Engineering, (2014), p. 1–37

    Google Scholar 

  76. K. Vamvoukakis, D. Stefanakis, A. Stavrinidis, K. Vassilevski, G. Konstantinidis, M. Kayambaki, K. Zekentes, Channel width effect on the operation of 4H-SiC vertical JFETs. Phys. Status Solidi A 214(4), 1600452 (2017). https://doi.org/10.1002/pssa.201600452

    Article  Google Scholar 

  77. K. Zekentes, A. Stavrinidis, G. Konstantinidis, M. Kayambaki, K. Vamvoukakis, E. Vassakis, K. Vassilevski, A.B. Horsfall, N.G. Wright, P. Brosselard, S. Niu, M. Lazar, D. Planson, D. Tournier, N. Camara, 4H-SiC VJFETs with self-aligned contacts. Mater. Sci. Forum 821-823, 793–796 (2015)

    Article  Google Scholar 

  78. A. Stavrinidis, G. Konstantinidis, K. Vamvoukakis, K. Zekentes, Salicide-like process for the formation of gate and source contacts in 4H-SiC TSI-VJFET. Mater. Sci. Forum 897, 407–410 (2017)

    Article  Google Scholar 

  79. V. Veliadis, T. McNutt, M. McCoy, H. Hearne, P. Potyraj, C. Scozzie, Large area silicon carbide VJFETs for 1200 V cascode switch operation. Int. J. Power Manag. Electron 2008, ID. 523721 (2008)

    Google Scholar 

  80. V. Veliadis, H. Hearne, T. McNutt, M. Snook, P. Potyraj, C. Scozzie, VJFET based all-SiC normally-off cascode switch for high temperature power handling applications. Mater. Sci. Forum 615-617, 711–714 (2009)

    Article  Google Scholar 

  81. V. Veliadis, B. Steiner, K. Lawson, S.B. Bayne, D. Urciuoli, H.C. Ha, N. El-Hinnawy, S. Gupta, P. Borodulin, R.S. Howell, C. Scozzie, Reliable operation of SiC JFET subjected to over 2.4 million 1200-V/115-A hard switch stressing events at 150 °C. IEEE Electron Dev. Lett. 34(3), 384–386 (2013)

    Article  Google Scholar 

  82. P.G. Neudeck, D.J. Spry, L. Chen, N.F. Prokop, M.J. Krasowski, Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Dev. Lett 38, 1082–1085 (2017). https://doi.org/10.1109/led.2017.2719280

    Article  Google Scholar 

  83. P.G. Neudeck, D.J. Spry, C. Liang-Yu, G.M. Beheim, R.S. Okojie, C.W. Chang, R.D. Meredith, T.L. Ferrier, L.J. Evans, M.J. Krasowski, N.F. Prokop, Stable electrical operation of 6H-SiC JFETs and ICs for thousands of hours at 500C. IEEE Electron Dev. Lett 29(5), 456–459 (2008)

    Article  Google Scholar 

  84. P.G. Neudeck, S.L. Garverick, D.J. Spry, L.-Y. Chen, G.M. Beheim, M.J. Krasowski, M. Mehregany, Extreme temperature 6H-SiC JFET integrated circuit technology. Phys. Status Solidi (a) 206(10), 2329–2345 (2009)

    Article  Google Scholar 

  85. https://unitedsic.com/

  86. J.P. Russell, A.M. Goodman, L.A. Goodman, J.M. Nielson, The COMFET: a new high conductance MOS gated device. IEEE Electron Dev. Lett. EDL-44(3), 63–65 (1983)

    Article  Google Scholar 

  87. B.J. Baliga, M.S. Adler, R.P. Love, P.V. Gray, N. Zommer, The insulated gate transistor : A new three-terminal MOS-controlled bipolar power device. IEEE Trans. Electron Dev ED-31(6), 821–828 (1984)

    Article  Google Scholar 

  88. T. Fujihira, Theory of semiconductor superjunction devices. Jpn. J.Appl. Phys 36(part 1, 10), 6254–6262 (1997)

    Article  Google Scholar 

  89. Infineon Technologies, https://www.infineon.com/cms/en/product/power/mosfet/n-channel/500v-950v. Accessed 23 Dec 2021.

  90. J. Palmour, SiC devices: Powering the next generation of electric vehicles. Presented at WIPDA 2019, Raleigh, NC, Oct 29–Oct 31, 2019

    Google Scholar 

  91. A. Agarwal, S. Ryu, J. Palmour, Power MOSFETs in 4H-SiC: Device design and technology, in Silicon Carbide, Recent Major Advances, ed. by W. J. Choyke, H. Matsunami, G. Pensl, (Springer-Verlag, 2004), pp. 785–811. ISBN 3-540-40459-9

    Chapter  Google Scholar 

  92. D.J. Lichtenwalner, B. Hull, V. Pala, E. van Brunt, S. Ryu, J.J. Sumakeris, M.J. O’Loughlin, A.A. Burk, S.T. Allen, J.W. Palmour, Performance and Reliability of SiC Power MOSFETs. MRS Adv. 1(02), 81–89 (2016)

    Article  Google Scholar 

  93. S. Ryu, S. Krishnaswami, M. Das, B. Hull, J. Richmond, B. Heath, A. Agarwal, J. Palmour, J. Scofield, 10.3 mΩ-cm2, 2kV power DMOSFETs in 4H-SiC. Proceedings of the 17th international symposium on power semiconductor devices & IC’s, Santa Barbra, CA, pp. 275–278, 23–26 May, 2005

    Google Scholar 

  94. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide. IEEE Electron Dev. Lett. 31(7), 710–712 (2010)

    Article  Google Scholar 

  95. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, Improved channel mobility in 4H-SiC MOSFETs by Boron passivation. IEEE Electron Dev. Lett. 35(12), 1176–1178 (2014)

    Article  Google Scholar 

  96. V. Soler, M. Cabello, J. Montserrat, J. Rebollo, J. Millan, P. Godignon, M. Berthou, E. Bianda, A. Mihaila, 4.5 kV SiC MOSFET with Boron doped gate dielectric. Proceedings of the 28th international symposium on power semiconductor devices and ICs, Prague, Czech Republic, pp. 283–286, 12–16 June, 2016

    Google Scholar 

  97. D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, J.W. Palmour, High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers. Appl. Phys. Lett. 105, 182107 (2014). https://doi.org/10.1063/1.4901259

    Article  Google Scholar 

  98. T. Kobayashi, Y. Matsushita, Structure and energetics of carbon defects in SiC(0001)/SiO2 systems at realistic temperatures: Defects in SiC, SiO2, and at their interface. J. Appl. Phys. 126, 145302 (2019)

    Article  Google Scholar 

  99. T. Kimoto, M. Kaneko, T. Tachiki, K. Ito, R. Ishikawa, X. Chi, D. Stefanakis, H. Tanaka, Physics and innovative technologies in SiC power devices. 2021 IEDM technical digest, pp. 36.1.1–36.1.4, San Francisco, CA, Dec 11–Dec 15, 2021

    Google Scholar 

  100. T. Kobayashi, T. Okuda, K. Tachiki, K. Ito, Y. Matsushita, T. Kimoto, Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high temperature nitridation. Appl. Phys. Exp 13, 091003 (2020)

    Article  Google Scholar 

  101. K. Tachiki, M. Kaneko, T. Kimoto, Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Appl. Phys. Exp 14, 031001 (2021)

    Article  Google Scholar 

  102. M. Wang, M. Yang, W. Liu, S. Yang, C. Han, L. Geng, Y. Hao, Toward High Performance 4H-SiC MOSFETs Using Low Temperature Annealing Process with Supercritical Fluid. 2021 IEDM technical digest, pp. 36.2.1 – 36.2.4, San Francisco, CA, Dec 11–Dec 15, 2021

    Google Scholar 

  103. D. Heer, D. Domes, D. Peters, Switching performance of a 1200 V SiC-Trench-MOSFET in a low-power module. Proceedings of PCIM, Nuremberg, pp. 1–7, 10–12 May, 2016

    Google Scholar 

  104. J.W. Palmour, J.A. Edmond, H.S. Kong, C.H. Carter Jr., 6H-silicon carbide devices and applications. Physica B 185, 461–465 (1993)

    Article  Google Scholar 

  105. J.W. Palmour, S.T. Allen, R. Singh, L.A. Lipkin, D.G. Waltz, 4H-silicon carbide power switching devices, in Silicon Carbide and Related Materials 1995, Institute of Phys. Conf. Series No. 142, ed. by S. Nakashima, H. Matsunami, S. Yoshida, H. Harima, (Inst. Of Phys. Publ, Bristol, 1996), pp. 813–816

    Google Scholar 

  106. H. Yano, H. Nakao, T. Hatayama, Y. Uraoka, T. Fuyuki, Increased channel mobility in 4H-SiC UMOSFETs using on-axis substrates. Mater. Sci. Forum 556-557, 807–811 (2007)

    Article  Google Scholar 

  107. J. Tan, J.A. Cooper Jr., M.R. Melloch, High-voltage accumulation-layer UMOSFET’s in 4H-SiC. IEEE Electron Dev. Lett. 19(12), 487–489 (1998)

    Article  Google Scholar 

  108. H. Takaya, T. Misumi, H. Fujiwara, T. Ito, 4H-SiC Trench MOSFET with low on-resistance at high temperature. Proceedings of ISPSD 2020, Vienna, Austria, pp. 118–121, Sept 13–18, 2020

    Google Scholar 

  109. S. Kyogoku, K. Tanaka, K. Ariyoshi, R. Iijima, Y. Kobayashi, S. Harada, Role of trench bottom shielding region on switching characteristics of 4H-SiC double-trench MOSFETs. Mater. Sci. Forum 924, 748–751 (2018)

    Article  Google Scholar 

  110. T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, Y. Yokotshuji, High performance SiC trench devices with ultra-low Ron. IEEE IEDM Tech. Dig., Washington DC, USA, pp. 26.5.1–26.5.3, 5–7 Dec 2011

    Google Scholar 

  111. D. Peters, R. Siemieniec, T. Aichinger, T. Basler, R. Esteve, W. Bergner, D. Kueck, Performance and ruggedness of 1200V SiC – Trench – MOSFET. Proceedings of the 29th international symposium on power semiconductor devices & ICs, Sapporo, Japan, pp. 239–242, 28 May–1 June 2017

    Google Scholar 

  112. G. Rescher, G. Pobegen, T. Aichinger, T. Grasser, Preconditioned BTI on 4H-SiC: Proposal for a nearly delay time-independent measurement technique. IEEE Trans. Electron Dev 65(4), 1419–1426 (2018)

    Article  Google Scholar 

  113. R. Kosugi, Y. Sakuma, K. Kojima, S. Itoh, A. Nagaka, T. Yatsuo, T. Tanake, H. Okumura, First experimental demonstration of SiC superjunction (SJ) structure by multi-epitaxial growth method. International symposium on power semiconductor devices and ICs, Waikoloa, USA, pp. 346–349, 15–19 June, 2014

    Google Scholar 

  114. S. Harada, Y. Kobayashi, S. Kyogoku, T. Morimoto, T. Tanaka, M. Takei, H. Okumura, First demonstration of dynamic characteristics for SiC superjunction MOSFET realized using multi-epitaxial growth method. Proceedings of IEDM 2018, San Francisco, CA, USA, pp. 8.2.1–8.2.4, 3–5 Dec 2018

    Google Scholar 

  115. Y. Kobayashi, S. Kyogoku, T. Morimoto, T. Kumazawa, Y. Yamashiro, M. Takei, S. Harada, High-temperature performance of 1.2 kV-class SiC super junction MOSFET. Proceedings of the 31st international symposium on power semiconductor devices & ICs, Shanghai, China, pp. 31–34, 19–23 May 2019

    Google Scholar 

  116. https://www.aist.go.jp/aist_e/list/latest_research/2020/20200108/en20200108.html

  117. https://www.fujielectric.com/company/tech/pdf/66-04/FER66-04-237-2020.pdf

  118. R. Kosugi, S. Ji, K. Mochizuki, K. Adachi, S. Segawa, Y. Kawada, Y. Yonezawa, H. Okumura, Breaking the theoretical limit of 6.5 kV-class 4H-SiC Super-Junction (SJ) MOSFETs by trench-filling epitaxial growth. Proceedings of the 31st international symposium on power semiconductor devices & ICs, Shanghai, China, pp. 39–42, 19–23 May 2019

    Google Scholar 

  119. S.H. Ryu, L. Cheng, S. Dhar, C. Capell, C. Jonas, J. Clayton, M. Donofrio, M.J. O'Loughlin, A.A. Burk, A.K. Agarwal, J.W. Palmour, Development of 15 kV 4H-SiC IGBTs. Mater. Sci. Forum 717–720, 1135–1138 (2012)

    Article  Google Scholar 

  120. V. Pala, E.V. Brunt, L. Cheng, M. O'Loughlin, J. Richmond, A. Burk, S.T. Allen, D. Grider, J.W. Palmour, 10 kV and 15 kV silicon carbide power MOSFETs for next-generation energy conversion and transmission systems. Proc. ECCE 2014 (Pittsburgh, PA, Sept 14–18), pp. 449–454, 2014

    Google Scholar 

  121. S. Ryu, C. Capell, E. Van Brunt, C. Jonas, M. O'Loughlin, J. Clayton, K. Lam, V. Pala, B. Hull, Y. Lemma, Ultra high voltage MOS controlled 4H-SiC power switching devices. Semicond. Sci. Tech. 30, 084001 (2015)

    Article  Google Scholar 

  122. S. Ryu, C. Capell, C. Jonas, M.J. O'Loughlin, J. Clayton, E. van Brunt, K. Lam, J. Richmond, A. Kadavelugu, S. Bhattacharya, A.A. Burk, A. Agarwal, D. Grider, S.T. Allen, J.W. Palmour, 20 kV 4H-SiC n-IGBTs. Mater. Sci. Forum 778-780, 1030–1033 (2014)

    Article  Google Scholar 

  123. E. van Brunt, L. Cheng, M.J. O'Loughlin, J. Richmond, V. Pala, J.W. Palmour, C.W. Tipton, C. Scozzie, 27 kV, 20A 4H-SiC n-IGBTs. Mater. Sci. Forum 821-823, 847–850 (2015)

    Article  Google Scholar 

  124. A. Koyama, Y. Kiuchi, T. Mizushima, K. Takenaka, S. Matsunaga, M. Sometani, K. Nakayama, H. Ishimori, A. Kimoto, M. Takei, T. Kato, Y. Yonezawa, H. Okumura, 20 kV-class ultra-high voltage 4H-SiC n-IE-IGBTs. Mater. Sci. Forum 1004, 899–904 (2020)

    Article  Google Scholar 

  125. N. Iwamuro, T. Laska, IGBT history, state-of -the-art, and future prospects. IEEE Trans. Electron Dev 64(3), 741–752 (2017)

    Article  Google Scholar 

  126. M. Kitagawa, I. Omura, S. Hasegawa, T. Inoue, A. Nakagawa, A 4500V Injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor, in IEEE IEDM Technical Digest, (1993), pp. 679–682

    Google Scholar 

  127. K. Eikyu, A. Sakai, H. Matsuura, Y. Nakazawa, Y. Akiyama, Y. Yamaguchi, M. Inuishi, On the scaling limit of the Si-IGBTs with very narrow mesa structures. Proceedings of ISPSD 2015, pp. 211 – 214, 2015

    Google Scholar 

  128. H. Takahashi, H. Haruguchi, H. Hagino, T. Yamada, Carrier stored trench gate bipolar transistor (CSTBT) – A novel power device for high voltage application. Proceedings of ISPSD 1996, pp. 349 – 352, 1996

    Google Scholar 

  129. S. Ryu, C. Capell, C. Jonas, M. O’Loughlin, J. Clayton, K. Lam, E. Van Brunt, Y. Lemma, J. Richmond, D. Grider, S. Allen, J.W. Palmour, An analysis of forward conduction characteristics of ultra high voltage 4H-SiC n-IGBTs, in Materials Science Forum, 858, (Trans Tech Publications, 2016), pp. 945–948

    Google Scholar 

  130. A. M. Research, “GaN power device market is expected to reach $1.24 Billion by 2027, at 35.4% CAGR,” GlobeNewswire News Room, May 11, 2020. http://www.globenewswire.com/news-release/2020/05/11/2031230/0/en/GaN-Power-Device-Market-Is-Expected-to-Reach-1-24-Billion-by-2027-at-35-4-CAGR.html. Accessed 15 Feb 2021.

  131. Y. Zhang, A. Dadgar, T. Palacios, Gallium nitride vertical power devices on foreign substrates: a review and outlook. J. Phys D Appl. Phys 51(27), 273001 (2018). https://doi.org/10.1088/1361-6463/aac8aa

    Article  Google Scholar 

  132. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys 85(6), 3222–3233 (1999)

    Article  Google Scholar 

  133. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett 77(2), 250–252 (2000). https://doi.org/10.1063/1.126940

    Article  Google Scholar 

  134. K. Shinohara, D.C. Regan, T. Yan, A.L. Corrion, D.F. Brown, J.C. Wong, J.F. Robinson, H.H. Fung, A. Schmitz, T.C. Oh, S.J. Kim, P.S. Chen, R.G. Nagele, A.D. Margomenos, M. Micovic, Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Dev 60(10), 2982–2996 (2013). https://doi.org/10.1109/TED.2013.2268160

    Article  Google Scholar 

  135. G.C. Barisich, S. Pavlidis, C.A.D. Morcillo, O.L. Chlieh, J. Papapolymerou, E. Gebara, An X-band GaN HEMT hybrid power amplifier with low-loss Wilkinson division on AlN substrate. Presented at the IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS), Tel Aviv, Israel, Oct 2013. https://doi.org/10.1109/COMCAS.2013.6685285

  136. K. Hoo Teo, Y. Zhang, N. Chowdhury, S. Rakheja, R. Ma, Q. **e, E. Yagyu, K. Yamanaka, K. Li, T. Palacios, Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. J. Appl. Phys 130(16), 160902 (2021). https://doi.org/10.1063/5.0061555

    Article  Google Scholar 

  137. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Dev 54(12), 3393–3399 (2007). https://doi.org/10.1109/TED.2007.908601

    Article  Google Scholar 

  138. Q. Song, R. Zhang, J.P. Kozak, J. Liu, Q. Li, Y. Zhang, Robustness of cascode GaN HEMTs in unclamped inductive switching. IEEE Trans. Power Electron 37(4), 4148–4160 (2022). https://doi.org/10.1109/TPEL.2021.3122740

    Article  Google Scholar 

  139. Q. Song, J.P. Kozak, M. **ao, Y. Ma, B. Wang, R. Zhang, R. Volkov, K. Smith, T. Baksht, Y. Zhang, Evaluation of 650V, 100A direct-drive GaN power switch for electric vehicle powertrain applications, in 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), (Nov 2021), pp. 28–33. https://doi.org/10.1109/WiPDA49284.2021.9645143

    Chapter  Google Scholar 

  140. Y. Zhang, A. Zubair, Z. Liu, M. **ao, J.A. Perozek, Y. Ma, T. Palacios, GaN FinFETs and trigate devices for power and RF applications: review and perspective. Semicond. Sci. Technol 36(5), 054001 (2021). https://doi.org/10.1088/1361-6641/abde17

    Article  Google Scholar 

  141. B. Lu, E. Matioli, T. Palacios, Tri-gate normally-off GaN power MISFET. IEEE Electron Dev. Lett 33(3), 360–362 (2012). https://doi.org/10.1109/LED.2011.2179971

    Article  Google Scholar 

  142. Y. Ma, M. **ao, Z. Du, X. Yan, K. Cheng, M. Clavel, M.K. Hudait, I. Kravchenko, H. Wang, Y. Zhang, Tri-gate GaN junction HEMT. Appl. Phys. Lett 117(14), 143506 (2020). https://doi.org/10.1063/5.0025351

    Article  Google Scholar 

  143. M. **ao, Y. Ma, K. Cheng, K. Liu, A. **e, E. Beam, Y. Cao, Y. Zhang, 3.3 kV multi-channel AlGaN/GaN Schottky barrier diodes with P-GaN termination. IEEE Electron Dev. Lett 41(8), 1177–1180 (2020). https://doi.org/10.1109/LED.2020.3005934

    Article  Google Scholar 

  144. J. Ma, G. Kampitsis, P. **ang, K. Cheng, E. Matioli, Multi-channel tri-gate GaN power Schottky diodes with low ON-resistance. IEEE Electron Dev. Lett 40(2), 275–278 (2019). https://doi.org/10.1109/LED.2018.2887199

    Article  Google Scholar 

  145. M. **ao, Y. Ma, Z. Du, X. Yan, R. Zhang, K. Cheng, K. Liu, A. **e, E. Beam, Y. Cao, H. Wang, Y. Zhang, 5 kV multi-channel AlGaN/GaN power Schottky barrier diodes with junction-Fin-anode, in 2020 IEEE International Electron Devices Meeting (IEDM), (Dec 2020), pp. 5.4.1–5.4.4. https://doi.org/10.1109/IEDM13553.2020.9372025

    Chapter  Google Scholar 

  146. M. **ao, Y. Ma, K. Liu, K. Cheng, Y. Zhang, 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN Schottky barrier diodes. IEEE Electron Dev. Lett 42(6), 808–811 (2021). https://doi.org/10.1109/LED.2021.3076802

    Article  Google Scholar 

  147. M. **ao, Y. Ma, V. Pathirana, K. Cheng, A. **e, E. Beam, Y. Cao, F. Udrea, H. Wang, Y. Zhang, Multi-channel monolithic-Cascode HEMT (MC2-HEMT): A new GaN power switch up to 10 kV, in 2021 IEEE International Electron Devices Meeting (IEDM), pp. 5.5.1–5.5.4

    Google Scholar 

  148. C. Sukwon, E.R. Heller, D. Dorsey, R. Vetury, S. Graham, The impact of bias conditions on self-heating in AlGaN/GaN HEMTs. IEEE Trans. Electron Dev 60(1), 159–162 (2013). https://doi.org/10.1109/TED.2012.2224115

    Article  Google Scholar 

  149. S. Pavlidis, A.C. Ulusoy, W.T. Khan, O.L. Chlieh, E. Gebara, J. Papapolymerou, A feasibility study of flip-chip packaged gallium nitride HEMTs on organic substrates for wideband RF amplifier applications, in IEEE Electronic Components and Technology Conference (ECTC), (May 2014), pp. 2293–2298. https://doi.org/10.1109/ECTC.2014.6897625

    Chapter  Google Scholar 

  150. Wide Bandgap Power Semiconductors | JEDEC. https://www.jedec.org/category/technology-focus-area/wide-bandgap-power-semiconductors-gan-sic. Accessed 6 Jan 2022.

  151. “TP65H015G5WS,” Transphorm. https://www.transphormusa.com/en/product/tp65h015g5ws/. Accessed 6 Jan 2022.

  152. S. Pavlidis, A.C. Ulusoy, J. Papapolymerou, A 5.4W X-band Gallium Nitride (GaN) power amplifier in an encapsulated organic package, in European Microwave Conference (EuMC), (2015), pp. 789–792. https://doi.org/10.1109/EuMC.2015.7345882

    Chapter  Google Scholar 

  153. R. Reiner, B. Weiss, D. Meder, P. Waltereit, T. Gerrer, R. Quay, C. Vockenberger, O. Ambacher, PCB-embedding for GaN-on-Si power devices and ICs, in CIPS 2018; 10th International Conference on Integrated Power Electronics Systems, (Mar 2018), pp. 1–6

    Google Scholar 

  154. GaN Systems, GN002: thermal design for packaged GaNPX® Devices, Application Note, Aug 2020.

    Google Scholar 

  155. S. Pavlidis, G. Alexopoulos, A.Ç. Ulusoy, M.K. Cho, J. Papapolymerou, Encapsulated organic package technology for wideband integration of heterogeneous MMICs. IEEE Trans. Microw. Theory Techniq 65(2), 438–448 (2017). https://doi.org/10.1109/TMTT.2016.2630067

    Article  Google Scholar 

  156. J.A. del Alamo, E.S. Lee, Stability and reliability of lateral GaN power field-effect transistors. IEEE Trans. Electron Dev 66(11), 4578–4590 (2019). https://doi.org/10.1109/TED.2019.2931718

    Article  Google Scholar 

  157. G. Zulauf, M. Guacci, J.W. Kolar, Dynamic on-resistance in GaN-on-Si HEMTs: Origins, dependencies, and future characterization frameworks. IEEE Trans. Power Electron 35(6), 5581–5588 (2020). https://doi.org/10.1109/TPEL.2019.2955656

    Article  Google Scholar 

  158. R. Zhang, J.P. Kozak, M. **ao, J. Liu, Y. Zhang, Surge-energy and overvoltage ruggedness of P-gate GaN HEMTs. IEEE Trans. Power Electron 35(12), 13409–13419 (2020). https://doi.org/10.1109/TPEL.2020.2993982

    Article  Google Scholar 

  159. R. Zhang, J.P. Kozak, Q. Song, M. **ao, J. Liu, Y. Zhang, Dynamic breakdown voltage of GaN Power HEMTs, in 2020 IEEE International Electron Devices Meeting (IEDM), (Dec 2020), pp. 23.3.1–23.3.4. https://doi.org/10.1109/IEDM13553.2020.9371904

    Chapter  Google Scholar 

  160. J.P. Kozak, R. Zhang, Q. Song, J. Liu, W. Saito, Y. Zhang, True breakdown voltage and overvoltage margin of GaN power HEMTs in hard switching. IEEE Electron Dev. Lett 42(4), 505–508 (2021). https://doi.org/10.1109/LED.2021.3063360

    Article  Google Scholar 

  161. R. Zhang, J. Liu, Q. Li, S. Pidaparthi, A. Edwards, C. Drowley, Y. Zhang, Breakthrough short circuit robustness demonstrated in vertical GaN Fin JFET. IEEE Trans. Power Electron, 1–1 (2021). https://doi.org/10.1109/TPEL.2021.3138451

  162. H. Li, X. Li, X. Wang, X. Lyu, H. Cai, Y.M. Alsmadi, L. Liu, S. Bala, J. Wang, Robustness of 650-V enhancement-mode GaN HEMTs under various short-circuit conditions. IEEE Trans. Indus. Appl 55(2), 1807–1816 (2019). https://doi.org/10.1109/TIA.2018.2879289

    Article  Google Scholar 

  163. J. Liu, M. **ao, R. Zhang, S. Pidaparthi, C. Drowley, L. Baubutr, A. Edwards, H. Cui, C. Coles, Y. Zhang, Trap-mediated Avalanche in large-area 1.2 kV vertical GaN p-n diodes. IEEE Electron Dev. Lett 41(9), 1328–1331 (2020). https://doi.org/10.1109/LED.2020.3010784

    Article  Google Scholar 

  164. J. Liu, R. Zhang, M. **ao, S. Pidaparthi, H. Cui, A. Edwards, L. Baubutr, C. Drowley, Y. Zhang, Surge current and Avalanche ruggedness of 1.2-kV vertical GaN p-n diodes. IEEE Trans. Power Electron 36(10), 10959–10964 (2021). https://doi.org/10.1109/TPEL.2021.3067019

    Article  Google Scholar 

  165. J. Liu, M. **ao, Y. Zhang, S. Pidaparthi, H. Cui, A. Edwards, L. Baubutr, W. Meier, C. Coles, C. Drowley, 1.2 kV vertical GaN Fin JFETs with robust Avalanche and fast switching capabilities, in 2020 IEEE International Electron Devices Meeting (IEDM), (Dec 2020), pp. 23.2.1–23.2.4. https://doi.org/10.1109/IEDM13553.2020.9372048

    Chapter  Google Scholar 

  166. J. Liu, M. **ao, R. Zhang, S. Pidaparthi, H. Cui, A. Edwards, M. Craven, L. Baubutr, C. Drowley, Y. Zhang, 1.2-kV vertical GaN Fin-JFETs: High-temperature characteristics and Avalanche capability. IEEE Trans. Electron Dev 68(4), 2025–2032 (2021). https://doi.org/10.1109/TED.2021.3059192

    Article  Google Scholar 

  167. J. Liu, R. Zhang, M. **ao, S. Pidaparthi, H. Cui, A. Edwards, C. Drowley, Y. Zhang, Tuning Avalanche path in vertical GaN JFETs by gate driver design. IEEE Trans. Power Electron, 1–1 (2021). https://doi.org/10.1109/TPEL.2021.3132906

  168. M. Giandalia, J. Zhang, T. Ribarich, 650 V AllGaNTM power IC for power supply applications, in 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), (Nov 2016), pp. 220–222. https://doi.org/10.1109/WiPDA.2016.7799941

    Chapter  Google Scholar 

  169. R. Chu, Y. Cao, M. Chen, R. Li, D. Zehnder, An experimental demonstration of GaN CMOS technology. IEEE Electron Dev. Lett 37(3), 269–271 (2016). https://doi.org/10.1109/LED.2016.2515103

    Article  Google Scholar 

  170. N. Chowdhury, J. Lemettinen, Q. **e, Y. Zhang, N.S. Rajput, P. **ang, K. Cheng, S. Suihkonen, H.W. Then, T. Palacios, p-channel GaN transistor based on p-GaN/AlGaN/GaN on Si. IEEE Electron Dev Lett 40(7), 1036–1039 (2019). https://doi.org/10.1109/LED.2019.2916253

    Article  Google Scholar 

  171. N. Chowdhury, Q. **e, M. Yuan, K. Cheng, H.W. Then, T. Palacios, Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Dev. Lett 41(6), 820–823 (2020). https://doi.org/10.1109/LED.2020.2987003

    Article  Google Scholar 

  172. H.W. Then, S. Dasgupta, M. Radosavljevic, P. Agababov, I. Ban, R. Bristol, M. Chandhok, S. Chouksey, B. Holybee, C.Y. Huang, B. Krist, K. Jun, K. Lin, N. Nidhi, T. Michaelos, B. Mueller, R. Paul, J. Peck, W. Rachmady, D. Staines, T. Talukdar, N. Thomas, T. Tronic, P. Fischer, W. Hafez, 3D heterogeneous integration of high performance high-K metal gate GaN NMOS and Si PMOS transistors on 300mm high-resistivity Si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications, in 2019 IEEE International Electron Devices Meeting (IEDM), (Dec 2019), pp. 17.3.1–17.3.4. https://doi.org/10.1109/IEDM19573.2019.8993583

    Chapter  Google Scholar 

  173. H.W. Then, M. Radosavljevic, P. Agababov, I. Ban, R. Bristol, M. Chandhok, S. Chouksey, B. Holybee, C.Y. Huang, B. Krist, K. Jun, P. Koirala, K. Lin, T. Michaelos, R. Paul, J. Peck, W. Rachmady, D. Staines, T. Talukdar, N. Thomas, T. Tronic, P. Fischer, W. Hafez, GaN and Si transistors on 300mm Si(111) enabled by 3D monolithic heterogeneous integration, in 2020 IEEE Symposium on VLSI Technology, (Jun 2020), pp. 1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265093

    Chapter  Google Scholar 

  174. Y. Zhang, M. Sun, Z. Liu, D. Piedra, H.S. Lee, F. Gao, T. Fujishima, T. Palacios, Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors. IEEE Trans. Electron Dev 60(7), 2224–2230 (2013). https://doi.org/10.1109/TED.2013.2261072

    Article  Google Scholar 

  175. Y. Zhang, T. Palacios, (Ultra)Wide-bandgap vertical power FinFETs. IEEE Trans. Electron Dev 67(10), 3960–3971 (2020). https://doi.org/10.1109/TED.2020.3002880

    Article  Google Scholar 

  176. M. **ao, T. Palacios, Y. Zhang, ON-resistance in vertical power FinFETs. IEEE Trans. Electron Dev 66(9), 3903–3909 (2019). https://doi.org/10.1109/TED.2019.2928825

    Article  Google Scholar 

  177. Y. Zhang, M. Sun, D. Piedra, J. Hu, Z. Liu, Y. Lin, X. Gao, K. Shepard, T. Palacios, 1200 V GaN vertical fin power field-effect transistors, in 2017 IEEE International Electron Devices Meeting (IEDM), (Dec 2017), pp. 9.2.1–9.2.4. https://doi.org/10.1109/IEDM.2017.8268357

    Chapter  Google Scholar 

  178. Y. Zhang, M. Sun, J. Perozek, Z. Liu, A. Zubair, D. Piedra, N. Chowdhury, X. Gao, K. Shepard, T. Palacios, Large-area 1.2-kV GaN vertical power FinFETs with a record switching of merit. IEEE Electron Dev. Lett 40(1), 75–78 (2019). https://doi.org/10.1109/LED.2018.2880306

    Article  Google Scholar 

  179. I. Ben-Yaacov, Y.-K. Seck, U.K. Mishra, S.P. DenBaars, AlGaN/GaN current aperture vertical electron transistors with regrown channels. J. Appl. Phys 95(4), 2073–2078 (2004). https://doi.org/10.1063/1.1641520

    Article  Google Scholar 

  180. D. Ji, A. Agarwal, W. Li, S. Keller, S. Chowdhury, Demonstration of GaN current aperture vertical electron transistors with aperture region formed by ion implantation. IEEE Trans. Electron Dev 65(2), 483–487 (2018). https://doi.org/10.1109/TED.2017.2786141

    Article  Google Scholar 

  181. D. Ji, A. Agarwal, H. Li, W. Li, S. Keller, S. Chowdhury, 880 V/2.7 mΩ-cm2 MIS gate trench CAVET on bulk GaN substrates. IEEE Electron Dev. Lett 39(6), 863–865 (2018). https://doi.org/10.1109/LED.2018.2828844

    Article  Google Scholar 

  182. D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, T. Ueda, 1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure, in IEDM Tech. Dig, (Dec 2016), pp. 10.1.1–10.1.4. https://doi.org/10.1109/IEDM.2016.7838385

    Chapter  Google Scholar 

  183. T. Oka, T. Ina, Y. Ueno, J. Nishii, Over 10A operation with switching characteristics of 1.2 kV-class vertical GaN trench MOSFETs on a bulk GaN substrate, 459–462 (2016). https://doi.org/10.1109/ISPSD.2016.7520877

  184. R. Li, Y. Cao, M. Chen, R. Chu, 600 V/1.7 Ω normally-off GaN vertical trench metal–oxide–semiconductor field-effect transistor. IEEE Electron Dev. Lett 37(11), 1466–1469 (2016). https://doi.org/10.1109/LED.2016.2614515

    Article  Google Scholar 

  185. C. Gupta, C. Lund, S.H. Chan, A. Agarwal, J. Liu, Y. Enatsu, S. Keller, U.K. Mishra, In situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates. IEEE Electron Dev. Lett 38(3), 353–355 (2017). https://doi.org/10.1109/LED.2017.2649599

    Article  Google Scholar 

  186. R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, M. Edo, K. Nakagawa, Mg implantation dose dependence of MOS channel characteristics in GaN double-implanted MOSFETs. Appl. Phys. Exp 12(5), 054001 (2019). https://doi.org/10.7567/1882-0786/ab0c2c

    Article  Google Scholar 

  187. H. Ohta, K. Hayashi, F. Horikiri, M. Yoshino, T. Nakamura, T. Mishima, 5.0 kV breakdown-voltage vertical GaN p–n junction diodes. Japanese J. Appl. Phys 57(4S), 04FG09 (2018). https://doi.org/10.7567/JJAP.57.04FG09

    Article  Google Scholar 

  188. K. Nomoto, Z. Hu, B. Song, M. Zhu, M. Qi, R. Yan, V. Protasenko, E. Imhoff, J. Kuo, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, H.G. **ng, GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 m???-cm2: A record high figure-of-merit of 12.8 GW/cm2, in 2015 IEEE International Electron Devices Meeting (IEDM), (Dec 2015), pp. 9.7.1–9.7.4. https://doi.org/10.1109/IEDM.2015.7409665

    Chapter  Google Scholar 

  189. Y. Zhang, M. Sun, Z. Liu, D. Piedra, M. Pan, X. Gao, Y. Lin, A. Zubair, L. Yu, T. Palacios, Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings, in 2016 IEEE International Electron Devices Meeting (IEDM), (Dec 2016), pp. 10.2.1–10.2.4. https://doi.org/10.1109/IEDM.2016.7838386

    Chapter  Google Scholar 

  190. Y. Zhang, Z. Liu, M.J. Tadjer, M. Sun, D. Piedra, C. Hatem, T.J. Anderson, L.E. Luna, A. Nath, A.D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B.N. Feigelson, K.D. Hobart, T. Palacios, Vertical GaN junction barrier Schottky rectifiers by selective ion implantation. IEEE Electron Dev. Lett 38(8), 1097–1100 (2017). https://doi.org/10.1109/LED.2017.2720689

    Article  Google Scholar 

  191. T. Hayashida, T. Nanjo, A. Furukawa, M. Yamamuka, Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV. Appl. Phys. Exp 10(6), 061003 (2017). https://doi.org/10.7567/APEX.10.061003

    Article  Google Scholar 

  192. K. Hasegawa, G. Nishio, K. Yasunishi, N. Tanaka, N. Murakami, T. Oka, Vertical GaN trench MOS barrier Schottky rectifier maintaining low leakage current at 200 °C with blocking voltage of 750 V. Appl. Phys. Exp 10(12), 121002 (2017). https://doi.org/10.7567/APEX.10.121002

    Article  Google Scholar 

  193. Y. Zhang, M. Sun, D. Piedra, M. Azize, X. Zhang, T. Fujishima, T. Palacios, GaN-on-Si vertical Schottky and p-n diodes. IEEE Electron Dev. Lett 35(6), 618–620 (2014). https://doi.org/10.1109/LED.2014.2314637

    Article  Google Scholar 

  194. Y. Zhang, D. Piedra, M. Sun, J. Hennig, A. Dadgar, L. Yu, T. Palacios, High-performance 500 V quasi- and fully-vertical GaN-on-Si pn diodes. IEEE Electron Dev. Lett 38(2), 248–251 (2017). https://doi.org/10.1109/LED.2016.2646669

    Article  Google Scholar 

  195. S. Mase, T. Hamada, J.J. Freedsman, T. Egawa, Effect of drift layer on the breakdown voltage of fully-vertical GaN-on-Si p-n diodes. IEEE Electron Dev. Lett 38(12), 1720–1723 (2017). https://doi.org/10.1109/LED.2017.2765340

    Article  Google Scholar 

  196. Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, T. Palacios, 720-V/0.35-mΩ∙cm2 fully vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers. IEEE Electron Dev. Lett 39(5), 715–718 (2018). https://doi.org/10.1109/LED.2018.2819642

    Article  Google Scholar 

  197. R.A. Khadar, C. Liu, R. Soleimanzadeh, E. Matioli, Fully vertical GaN-on-Si power MOSFETs. IEEE Electron Dev. Lett 40(3), 443–446 (2019). https://doi.org/10.1109/LED.2019.2894177

    Article  Google Scholar 

  198. R. Xu, P. Chen, M. Liu, J. Zhou, Y. Yang, Y. Li, C. Ge, H. Peng, B. Liu, D. Chen, Z. **e, R. Zhang, Y. Zheng, 1.4-kV quasi-vertical GaN Schottky barrier diode with reverse p-n junction termination. IEEE J. Electron Dev. Soc 8, 316–320 (2020). https://doi.org/10.1109/JEDS.2020.2980759

    Article  Google Scholar 

  199. Y. Zhang, H.Y. Wong, M. Sun, S. Joglekar, L. Yu, N.A. Braga, R.V. Mickevicius, T. Palacios, Design space and origin of off-state leakage in GaN vertical power diodes, in 2015 IEEE International Electron Devices Meeting (IEDM), (Dec 2015), p. 35.1.1–35.1.4. https://doi.org/10.1109/IEDM.2015.7409830

    Chapter  Google Scholar 

  200. F. Udrea, G. Deboy, T. Fujihira, Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Dev 64(3), 720–734 (2017). https://doi.org/10.1109/TED.2017.2658344

    Article  Google Scholar 

  201. H. Ishida, D. Shibata, M. Yanagihara, Y. Uemoto, H. Matsuo, T. Ueda, T. Tanaka, D. Ueda, Unlimited high breakdown voltage by natural super junction of polarized semiconductor. IEEE Electron Dev. Lett 29(10), 1087–1089 (2008). https://doi.org/10.1109/LED.2008.2002753

    Article  Google Scholar 

  202. M. **ao, Z. Du, J. **e, E. Beam, X. Yan, K. Cheng, H. Wang, Y. Cao, Y. Zhang, Lateral p-GaN/2DEG junction diodes by selective-area p-GaN trench-filling-regrowth in AlGaN/GaN. Appl. Phys. Lett 116(5), 053503 (2020). https://doi.org/10.1063/1.5139906

    Article  Google Scholar 

  203. M. **ao, R. Zhang, D. Dong, H. Wang, Y. Zhang, Design and simulation of GaN superjunction transistors with 2-DEG channels and fin channels. IEEE J. Emerg. Select. Topics Power Electron 7(3), 1475–1484 (2019). https://doi.org/10.1109/JESTPE.2019.2912978

    Article  Google Scholar 

  204. D. Khachariya, D. Szymanski, P. Reddy, E. Kohn, Z. Sitar, R. Collazo, S. Pavlidis, (Invited) A path toward vertical GaN superjunction devices. ECS Trans 98(6), 69 (2020). https://doi.org/10.1149/09806.0069ecst

    Article  Google Scholar 

  205. D. Szymanski, D. Khachariya, T.B. Eldred, P. Bagheri, S. Washiyama, A. Chang, S. Pavlidis, R. Kirste, P. Reddy, E. Kohn, L. Lauhon, R. Collazo, Z. Sitar, GaN lateral polar junction arrays with 3D control of do** by supersaturation modulated growth: A path toward III-nitride superjunctions. J. Appl. Phys 131(1), 015703 (2022). https://doi.org/10.1063/5.0076044

    Article  Google Scholar 

  206. B.J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd edn. (Springer International Publishing AG, Boston, 2019)

    Book  Google Scholar 

  207. K. Fu, H. Fu, X. Deng, P.-Y. Su, H. Liu, K. Hatch, C.-Y. Cheng, D. Messina, R.V. Meidanshahi, P. Peri, C. Yang, T.-H. Yang, J. Montes, J. Zhou, X. Qi, S.M. Goodnick, F.A. Ponce, D.J. Smith, R. Nemanich, Y. Zhao, The impact of interfacial Si contamination on GaN-on-GaN regrowth for high power vertical devices. Appl. Phys. Lett 118(22), 222104 (2021). https://doi.org/10.1063/5.0049473

    Article  Google Scholar 

  208. S. Kotzea, A. Debald, M. Heuken, H. Kalisch, A. Vescan, Demonstration of a GaN-based vertical-channel JFET fabricated by selective-area regrowth. IEEE Trans. Electron Dev 65(12), 5329–5336 (2018). https://doi.org/10.1109/TED.2018.2875534

    Article  Google Scholar 

  209. C. Yang, H. Fu, V.N. Kumar, K. Fu, H. Liu, X. Huang, T.-H. Yang, H. Chen, J. Zhou, X. Deng, J. Montes, F.A. Ponce, D. Vasileska, Y. Zhao, GaN vertical-channel junction field-effect transistors with regrown p-GaN by MOCVD. IEEE Trans. Electron Dev, 1–6 (2020). https://doi.org/10.1109/TED.2020.3010183

  210. M. **ao, X. Yan, J. **e, E. Beam, Y. Cao, H. Wang, Y. Zhang, Origin of leakage current in vertical GaN devices with nonplanar regrown p-GaN. Appl. Phys. Lett 117(18), 183502 (2020). https://doi.org/10.1063/5.0021374

    Article  Google Scholar 

  211. H.W. Choi, M.A. Rana, S.J. Chua, T. Osipowicz, J.S. Pan, Surface analysis of GaN decomposition. Semicond. Sci. Technol 17(12), 1223–1225 (2002). https://doi.org/10.1088/0268-1242/17/12/304

    Article  Google Scholar 

  212. M.J. Tadjer, B.N. Feigelson, J.D. Greenlee, J.A. Freitas, T.J. Anderson, J.K. Hite, L. Ruppalt, C.R. Eddy, K.D. Hobart, F.J. Kub, Selective p-type do** of GaN:Si by Mg ion implantation and multicycle rapid thermal annealing. ECS J. Solid State Sci. Technol 5(2), P124–P127 (2016). https://doi.org/10.1149/2.0371602jss

    Article  Google Scholar 

  213. V. Meyers, E. Rocco, T.J. Anderson, J.C. Gallagher, M.A. Ebrish, K. Jones, M. Derenge, M. Shevelev, V. Sklyar, K. Hogan, B. McEwen, F. Shahedipour-Sandvik, p-type conductivity and damage recovery in implanted GaN annealed by rapid gyrotron microwave annealing. J. Appl. Phys 128(8), 085701 (2020). https://doi.org/10.1063/5.0016358

    Article  Google Scholar 

  214. S.R. Aid, T. Uneme, N. Wakabayashi, K. Yamazaki, A. Uedono, S. Matsumoto, Carrier activation in Mg implanted GaN by short wavelength Nd:YAG laser thermal annealing. Phys. Status Solidi (A) 214(10), 1700225 (2017). https://doi.org/10.1002/pssa.201700225

    Article  Google Scholar 

  215. M.H. Breckenridge, J. Tweedie, P. Reddy, Y. Guan, P. Bagheri, D. Szymanski, S. Mita, K. Sierakowski, M. Boćkowski, R. Collazo, Z. Sitar, High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing. Appl. Phys. Lett 118(2), 022101 (2021). https://doi.org/10.1063/5.0038628

    Article  Google Scholar 

  216. H. Sakurai, M. Omori, S. Yamada, Y. Furukawa, H. Suzuki, T. Narita, K. Kataoka, M. Horita, M. Bockowski, J. Suda, T. Kachi, Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Appl. Phys. Lett 115(14), 142104 (2019). https://doi.org/10.1063/1.5116866

    Article  Google Scholar 

  217. D. Khachariya, M.H. Breckenridge, W. Kim, A. Klump, K. Wang, S. Mita, J. Tweedie, S. Stein, P. Reddy, M. Bockowski, Z. Sitar, R. Collazo, S. Pavlidis, 1 kV GaN-on-GaN PN diode using Mg implantation. Presented at the IEEE device research conference (DRC), Virtual, 2020

    Google Scholar 

  218. D. Khachariya, D. Szymanski, R. Sengupta, P. Reddy, E. Kohn, Z. Sitar, R. Collazo, S. Pavlidis, Chemical treatment effects on Schottky contacts to metalorganic chemical vapor deposited n-type N-polar GaN. J. Appl. Phys 128(6), 064501 (2020). https://doi.org/10.1063/5.0015140

    Article  Google Scholar 

  219. B. Romanczyk, X. Zheng, M. Guidry, H. Li, N. Hatui, C. Wurm, A. Krishna, E. Ahmadi, S. Keller, U.K. Mishra, W-band power performance of SiN-passivated N-Polar GaN deep recess HEMTs. IEEE Electron Dev. Lett 41(3), 349–352 (2020). https://doi.org/10.1109/LED.2020.2967034

    Article  Google Scholar 

  220. O.S. Koksaldi, J. Haller, H. Li, B. Romanczyk, M. Guidry, S. Wienecke, S. Keller, U.K. Mishra, N-Polar GaN HEMTs exhibiting record breakdown voltage over 2000 V and low dynamic on-resistance. IEEE Electron Dev. Lett 39(7), 1014–1017 (2018). https://doi.org/10.1109/LED.2018.2834939

    Article  Google Scholar 

  221. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, J.A. Simmons, Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater 4(1), 1600501 (2018). https://doi.org/10.1002/aelm.201600501

    Article  Google Scholar 

  222. R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. **e, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J. Electrochem. Soc 158(5), H530 (2011). https://doi.org/10.1149/1.3560527

    Article  Google Scholar 

  223. D. Khachariya, S. Mita, P. Reddy, S. Dangi, P. Bagheri, M.H. Breckenridge, R. Sengupta, E. Kohn, Z. Sitar, R. Collazo, S. Pavlidis, Al0.85Ga0.15N/Al0.6Ga0.4N high electron mobility transistors on native AlN substrates with >9 MV/cm Mesa breakdown fields, in 2021 Device Research Conference (DRC), (Jun. 2021), pp. 1–2. https://doi.org/10.1109/DRC52342.2021.9467186

    Chapter  Google Scholar 

  224. I. Abid, J. Mehta, Y. Cordier, J. Derluyn, S. Degroote, H. Miyake, F. Medjdoub, AlGaN channel high electron mobility transistors with Regrown Ohmic contacts. Electronics 10(6), Art. no. 6 (2021). https://doi.org/10.3390/electronics10060635

    Article  Google Scholar 

  225. H. Okumura, S. Suihkonen, J. Lemettinen, A. Uedono, Y. Zhang, D. Piedra, T. Palacios, AlN metal–semiconductor field-effect transistors using Si-ion implantation. Japanese J. Appl. Phys 57(4S), 04FR11 (2018). https://doi.org/10.7567/JJAP.57.04FR11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Zekentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zekentes, K. et al. (2023). SiC and GaN Power Devices. In: Iacopi, F., Balestra, F. (eds) More-than-Moore Devices and Integration for Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-21610-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21610-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21609-1

  • Online ISBN: 978-3-031-21610-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation