Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC

  • Chapter
  • First Online:
Cholesterol and PI(4,5)P2 in Vital Biological Functions

Abstract

Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ory DS. Niemann-Pick type C: a disorder of cellular cholesterol trafficking. Biochim Biophys Acta. 2000;1529(1-3):331–9.

    Article  CAS  PubMed  Google Scholar 

  2. Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003;64(4):269–81.

    Article  CAS  PubMed  Google Scholar 

  3. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Patterson MC, Walkley SU. Niemann-Pick disease, type C and Roscoe Brady. Mol Genet Metab. 2017;120(1-2):34–7.

    Article  CAS  PubMed  Google Scholar 

  5. Pentchev PG, Gal AE, Booth AD, Omodeo-Sale F, Fouks J, Neumeyer BA, et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta. 1980;619(3):669–79.

    Article  CAS  PubMed  Google Scholar 

  6. Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, et al. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci U S A. 1985;82(23):8247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M, Weintroub H. The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem. 1986;261(6):2772–7.

    Article  CAS  PubMed  Google Scholar 

  8. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31.

    Article  CAS  PubMed  Google Scholar 

  9. Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997;277(5323):232–5.

    Article  CAS  PubMed  Google Scholar 

  10. Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science. 2000;290(5500):2298–301.

    Article  CAS  PubMed  Google Scholar 

  11. Friedland N, Liou HL, Lobel P, Stock AM. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A. 2003;100(5):2512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deffieu MS, Pfeffer SR. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A. 2011;108(47):18932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G. Structure of human Niemann-Pick C1 protein. Proc Natl Acad Sci U S A. 2016;113(29):8212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patterson MC, Mengel E, Wijburg FA, Muller A, Schwierin B, Drevon H, et al. Disease and patient characteristics in NP-C patients: findings from an international disease registry. Orphanet J Rare Dis. 2013;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vanier MT, Rodriguez-Lafrasse C, Rousson R, Gazzah N, Juge MC, Pentchev PG, et al. Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta. 1991;1096(4):328–37.

    Article  CAS  PubMed  Google Scholar 

  17. Bolton SC, Soran V, Marfa MP, Imrie J, Gissen P, Jahnova H, et al. Clinical disease characteristics of patients with Niemann-Pick Disease Type C: findings from the International Niemann-Pick Disease Registry (INPDR). Orphanet J Rare Dis. 2022;17(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shulman LM, David NJ, Weiner WJ. Psychosis as the initial manifestation of adult-onset Niemann-Pick disease type C. Neurology. 1995;45(9):1739–43.

    Article  CAS  PubMed  Google Scholar 

  19. Josephs KA, Van Gerpen MW, Van Gerpen JA. Adult onset Niemann-Pick disease type C presenting with psychosis. J Neurol Neurosurg Psychiatry. 2003;74(4):528–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nadjar Y, Hutter-Moncada AL, Latour P, Ayrignac X, Kaphan E, Tranchant C, et al. Adult Niemann-Pick disease type C in France: clinical phenotypes and long-term miglustat treatment effect. Orphanet J Rare Dis. 2018;13(1):175.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burton BK, Ellis AG, Orr B, Chatlani S, Yoon K, Shoaff JR, et al. Estimating the prevalence of Niemann-Pick disease type C (NPC) in the United States. Mol Genet Metab. 2021;134(1-2):182–7.

    Article  CAS  PubMed  Google Scholar 

  22. Labrecque M, Touma L, Bherer C, Duquette A, Tetreault M. Estimated prevalence of Niemann-Pick type C disease in Quebec. Sci Rep. 2021;11(1):22621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erwood S, Bily TMI, Lequyer J, Yan J, Gulati N, Brewer RA, et al. Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol. 2022;40:885–95.

    Article  CAS  PubMed  Google Scholar 

  24. Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports. 2014;2(6):866–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peter F, Trilck M, Rabenstein M, Rolfs A, Frech MJ. Dataset in support of the generation of Niemann-Pick disease Type C1 patient-specific iPS cell lines carrying the novel NPC1 mutation c.1180T>C or the prevalent c.3182T>C mutation - Analysis of pluripotency and neuronal differentiation. Data Brief. 2017;12:123–31.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pentchev PG, Boothe AD, Kruth HS, Weintroub H, Stivers J, Brady RO. A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol. J Biol Chem. 1984;259(9):5784–91.

    Article  CAS  PubMed  Google Scholar 

  27. Maue RA, Burgess RW, Wang B, Wooley CM, Seburn KL, Vanier MT, et al. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet. 2012;21(4):730–50.

    Article  CAS  PubMed  Google Scholar 

  28. Praggastis M, Tortelli B, Zhang J, Fujiwara H, Sidhu R, Chacko A, et al. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35(21):8091–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development. 2007;134(20):3733–42.

    Article  CAS  PubMed  Google Scholar 

  30. Sym M, Basson M, Johnson C. A model for niemann-pick type C disease in the nematode Caenorhabditis elegans. Curr Biol. 2000;10(9):527–30.

    Article  CAS  PubMed  Google Scholar 

  31. Lowenthal AC, Cummings JF, Wenger DA, Thrall MA, Wood PA, de Lahunta A. Feline sphingolipidosis resembling Niemann-Pick disease type C. Acta Neuropathol. 1990;81(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  32. Brown DE, Thrall MA, Walkley SU, Wenger DA, Mitchell TW, Smith MO, et al. Feline Niemann-Pick disease type C. Am J Pathol. 1994;144(6):1412–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73(10):1303–10.

    Article  CAS  PubMed  Google Scholar 

  34. Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822(3-4):267–87.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2(1):31–68.

    Article  PubMed  Google Scholar 

  36. Ramprasad OG, Srinivas G, Rao KS, Joshi P, Thiery JP, Dufour S, et al. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cell Motil Cytoskeleton. 2007;64(3):199–216.

    Article  CAS  PubMed  Google Scholar 

  37. Goluszko P, Nowicki B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun. 2005;73(12):7791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36(36):10959–74.

    Article  CAS  PubMed  Google Scholar 

  39. Quinn PJ, Wolf C. The liquid-ordered phase in membranes. Biochim Biophys Acta. 2009;1788(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  40. Sonnino S, Prinetti A. Membrane domains and the “lipid raft” concept. Curr Med Chem. 2013;20(1):4–21.

    CAS  PubMed  Google Scholar 

  41. Rosenhouse-Dantsker A, Bukiya AN, editors. Direct mechanisms in cholesterol modulation of protein function, Adv Exp Med Biol. 1135. Springer; 2019.

    Google Scholar 

  42. Rosenhouse-Dantsker A, Bukiya AN, editors. Cholesterol modulation of protein function: sterol specificity and indirect mechanisms, Adv Exp Med Biol. 1115. Springer; 2019.

    Google Scholar 

  43. de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A. 2009;106(10):3654–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.

    Article  CAS  PubMed  Google Scholar 

  45. Hung WC, Lee MT, Chen FY, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92(11):3960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter. 2018;15(1):78–93.

    Article  PubMed  Google Scholar 

  47. Epand RF, Thomas A, Brasseur R, Vishwanathan SA, Hunter E, Epand RM. Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry. 2006;45(19):6105–14.

    Article  CAS  PubMed  Google Scholar 

  48. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iaea DB, Maxfield FR. Cholesterol trafficking and distribution. Essays Biochem. 2015;57:43–55.

    Article  PubMed  Google Scholar 

  50. Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110(7):891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta. 1999;1438(1):19–37.

    Article  CAS  PubMed  Google Scholar 

  52. Edwards PA. Cholesterol Synthesis. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. New York: Elsevier; 2004. p. 451–5.

    Chapter  Google Scholar 

  53. Prinz W. Cholesterol trafficking in the secretory and endocytic systems. Semin Cell Dev Biol. 2002;13(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  54. van Meer G. Caveolin, cholesterol, and lipid droplets? J Cell Biol. 2001;152(5):F29–34.

    Article  PubMed  Google Scholar 

  55. Soccio RE, Breslow JL. Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol. 2004;24(7):1150–60.

    Article  CAS  PubMed  Google Scholar 

  56. Chu BB, Liao YC, Qi W, **e C, Du X, Wang J, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015;161(2):291–306.

    Article  CAS  PubMed  Google Scholar 

  57. Luo J, Jiang LY, Yang H, Song BL. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci. 2019;44(3):273–92.

    Article  CAS  PubMed  Google Scholar 

  58. Lange Y, Strebel F, Steck TL. Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J Biol Chem. 1993;268(19):13838–43.

    Article  CAS  PubMed  Google Scholar 

  59. Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40(12):2264–70.

    Article  CAS  PubMed  Google Scholar 

  60. Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem. 2011;116(5):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patterson M, Vanier M, Suzuki K, Morris J, Carstea E. Neufeld E, et al. The Online Metabolic and Molecular Bases of Inherited Disease: In; 2001.

    Google Scholar 

  62. Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta. 1999;1438(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  63. Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A. 2003;100(5):2518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem. 2007;282(32):23525–31.

    Article  CAS  PubMed  Google Scholar 

  65. McCauliff LA, Xu Z, Li R, Kodukula S, Ko DC, Scott MP, et al. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport. J Biol Chem. 2015;290(45):27321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J. Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem. 2006;281(42):31594–604.

    Article  CAS  PubMed  Google Scholar 

  67. Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1-3):3–7.

    Article  CAS  PubMed  Google Scholar 

  68. Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A. 2004;101(16):5886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Infante RE, Abi-Mosleh L, Radhakrishnan A, Dale JD, Brown MS, Goldstein JL. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem. 2008;283(2):1052–63.

    Article  CAS  PubMed  Google Scholar 

  70. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A. 2008;105(40):15287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang ML, Motamed M, Infante RE, Abi-Mosleh L, Kwon HJ, Brown MS, et al. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 2010;12(2):166–73.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Estiu G, Khatri N, Wiest O. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)). Biochemistry. 2013;52(39):6879–91.

    Article  CAS  PubMed  Google Scholar 

  73. Elghobashi-Meinhardt N. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets. Biochemistry. 2014;53(41):6603–14.

    Article  CAS  PubMed  Google Scholar 

  74. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, et al. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Cell. 2016;165(6):1467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li X, Saha P, Li J, Blobel G, Pfeffer SR. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A. 2016;113(36):10079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li X, Lu F, Trinh MN, Schmiege P, Seemann J, Wang J, et al. 3.3 A structure of Niemann-Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proc Natl Acad Sci U S A. 2017;114(34):9116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Neufeld EB, Patel S, et al. Mutations in the leucine zipper motif and sterol-sensing domain inactivate the Niemann-Pick C1 glycoprotein. J Biol Chem. 1999;274(31):21861–6.

    Article  CAS  PubMed  Google Scholar 

  78. Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY. Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci U S A. 2004;101(34):12473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ohgane K, Karaki F, Dodo K, Hashimoto Y. Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol. 2013;20(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  80. Winkler MBL, Kidmose RT, Szomek M, Thaysen K, Rawson S, Muench SP, et al. Structural Insight into Eukaryotic Sterol Transport through Niemann-Pick Type C Proteins. Cell. 2019;179(2):485–97 e18.

    Article  CAS  PubMed  Google Scholar 

  81. Elghobashi-Meinhardt N. Computational tools unravel putative sterol binding sites in the lysosomal NPC1 protein. J Chem Inf Model. 2019;59(5):2432–41.

    Article  CAS  PubMed  Google Scholar 

  82. Elghobashi-Meinhardt N. Cholesterol transport in wild-type NPC1 and P691S: molecular dynamics simulations reveal changes in dynamical behavior. Int J Mol Sci. 2020;21(8):2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Long T, Qi X, Hassan A, Liang Q, De Brabander JK, Li X. Structural basis for itraconazole-mediated NPC1 inhibition. Nat Commun. 2020;11(1):152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trinh MN, Lu F, Li X, Das A, Liang Q, De Brabander JK, et al. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1. Proc Natl Acad Sci U S A. 2017;114(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  85. Millard EE, Gale SE, Dudley N, Zhang J, Schaffer JE, Ory DS. The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol. J Biol Chem. 2005;280(31):28581–90.

    Article  CAS  PubMed  Google Scholar 

  86. Trinh MN, Brown MS, Seemann J, Goldstein JL, Lu F. Lysosomal cholesterol export reconstituted from fragments of Niemann-Pick C1. Elife. 2018;7:e38564.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pugach EK, Feltes M, Kaufman RJ, Ory DS, Bang AG. High-content screen for modifiers of Niemann-Pick type C disease in patient cells. Hum Mol Genet. 2018;27(12):2101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pipalia NH, Huang A, Ralph H, Rujoi M, Maxfield FR. Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells. J Lipid Res. 2006;47(2):284–301.

    Article  CAS  PubMed  Google Scholar 

  89. Xu M, Liu K, Swaroop M, Sun W, Dehdashti SJ, McKew JC, et al. A phenotypic compound screening assay for lysosomal storage diseases. J Biomol Screen. 2014;19(1):168–75.

    Article  CAS  PubMed  Google Scholar 

  90. Shioi R, Karaki F, Yoshioka H, Noguchi-Yachide T, Ishikawa M, Dodo K, et al. Image-based screen capturing misfolding status of Niemann-Pick type C1 identifies potential candidates for chaperone drugs. PLoS One. 2020;15(12):e0243746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Munkacsi AB, Chen FW, Brinkman MA, Higaki K, Gutierrez GD, Chaudhari J, et al. An “exacerbate-reverse” strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann-Pick type C disease. J Biol Chem. 2011;286(27):23842–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Veyron P, Mutin M, Touraine JL. Transplantation of fetal liver cells corrects accumulation of lipids in tissues and prevents fatal neuropathy in cholesterol-storage disease BALB/c mice. Transplantation. 1996;62(8):1039–45.

    Article  CAS  PubMed  Google Scholar 

  93. Hsu YS, Hwu WL, Huang SF, Lu MY, Chen RL, Lin DT, et al. Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant. 1999;24(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  94. Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, et al. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance. 2021;4(10)

    Google Scholar 

  95. Kurokawa Y, Osaka H, Kouga T, Jimbo E, Muramatsu K, Nakamura S, et al. Gene therapy in a mouse model of Niemann-Pick disease Type C1. Hum Gene Ther. 2021;32(11-12):589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hughes MP, Smith DA, Morris L, Fletcher C, Colaco A, Huebecker M, et al. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet. 2018;27(17):3079–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. **e C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58(3):512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chandler RJ, Williams IM, Gibson AL, Davidson CD, Incao AA, Hubbard BT, et al. Systemic AAV9 gene therapy improves the lifespan of mice with Niemann-Pick disease, type C1. Hum Mol Genet. 2017;26(1):52–64.

    CAS  PubMed  Google Scholar 

  99. Pineda M, Jurickova K, Karimzadeh P, Kolnikova M, Malinova V, Insua JL, et al. Disease characteristics, prognosis and miglustat treatment effects on disease progression in patients with Niemann-Pick disease Type C: an international, multicenter, retrospective chart review. Orphanet J Rare Dis. 2019;14(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zervas M, Somers KL, Thrall MA, Walkley SU. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol. 2001;11(16):1283–7.

    Article  CAS  PubMed  Google Scholar 

  101. Solomon BI, Smith AC, Sinaii N, Farhat N, King MC, Machielse L, et al. Association of miglustat with swallowing outcomes in Niemann-Pick disease, Type C1. JAMA Neurol. 2020;77(12):1564–8.

    Article  PubMed  Google Scholar 

  102. Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis. 2018;13(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Patterson MC, Garver WS, Giugliani R, Imrie J, Jahnova H, Meaney FJ, et al. Long-term survival outcomes of patients with Niemann-Pick disease type C receiving miglustat treatment: a large retrospective observational study. J Inherit Metab Dis. 2020;43(5):1060–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Arguello G, Balboa E, Tapia PJ, Castro J, Yanez MJ, Mattar P, et al. Genistein activates transcription factor EB and corrects Niemann-Pick C phenotype. Int J Mol Sci. 2021;22(8)

    Google Scholar 

  105. Brown A, Patel S, Ward C, Lorenz A, Ortiz M, DuRoss A, et al. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder. Sci Rep. 2016;6:31750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ilnytska O, Lai K, Gorshkov K, Schultz ML, Tran BN, Jeziorek M, et al. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. J Biol Chem. 2021;297(1):100813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ilnytska O, Jeziorek M, Lai K, Altan-Bonnet N, Dobrowolski R, Storch J. Lysobisphosphatidic acid (LBPA) enrichment promotes cholesterol egress via exosomes in Niemann Pick type C1 deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rujoi M, Pipalia NH, Maxfield FR. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells. PLoS One. 2010;5(9):e12788.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rosenbaum AI, Rujoi M, Huang AY, Du H, Grabowski GA, Maxfield FR. Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim Biophys Acta. 2009;1791(12):1155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Camargo F, Erickson RP, Garver WS, Hossain GS, Carbone PN, Heidenreich RA, et al. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 2001;70(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  112. Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem. 2005;280(12):11731–9.

    Article  CAS  PubMed  Google Scholar 

  113. Rosenbaum AI, Zhang G, Warren JD, Maxfield FR. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci U S A. 2010;107(12):5477–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc Natl Acad Sci U S A. 2009;106(46):19316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci U S A. 2009;106(7):2377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009;4(9):e6951.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ramirez CM, Liu B, Taylor AM, Repa JJ, Burns DK, Weinberg AG, et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res. 2010;68(4):309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aqul A, Liu B, Ramirez CM, Pieper AA, Estill SJ, Burns DK, et al. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci. 2011;31(25):9404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taylor AM, Liu B, Mari Y, Liu B, Repa JJ. Cyclodextrin mediates rapid changes in lipid balance in Npc1-/- mice without carrying cholesterol through the bloodstream. J Lipid Res. 2012;53(11):2331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vite CH, Bagel JH, Swain GP, Prociuk M, Sikora TU, Stein VM, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med. 2015;7(276):276ra26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ottinger EA, Kao ML, Carrillo-Carrasco N, Yanjanin N, Shankar RK, Janssen M, et al. Collaborative development of 2-hydroxypropyl-beta-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr Top Med Chem. 2014;14(3):330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maarup TJ, Chen AH, Porter FD, Farhat NY, Ory DS, Sidhu R, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1. Mol Genet Metab. 2015;116(1-2):75–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walkley SU, Davidson CD, Jacoby J, Marella PD, Ottinger EA, Austin CP, et al. Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet J Rare Dis. 2016;11(1):161.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Berry-Kravis E, Chin J, Hoffmann A, Winston A, Stoner R, LaGorio L, et al. Long-term treatment of Niemann-Pick Type C1 disease with intrathecal 2-hydroxypropyl-beta-cyclodextrin. Pediatr Neurol. 2018;80:24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet. 2017;390(10104):1758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B. Phosphoinositides: lipid regulators of membrane proteins. J Physiol. 2010;588(Pt 17):3179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–6.

    Article  CAS  PubMed  Google Scholar 

  128. Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.

    Article  CAS  PubMed  Google Scholar 

  129. Liu C, Deb S, Ferreira VS, Xu E, Baumgart T. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One. 2018;13(2):e0192667.

    Article  PubMed  PubMed Central  Google Scholar 

  130. De Craene JO, Bertazzi DL, Bar S, Friant S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci. 2017;18(3)

    Google Scholar 

  131. Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem. 2018;293(5):1526–35.

    Article  CAS  PubMed  Google Scholar 

  132. Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV, Humpolickova J, et al. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J Cell Biol. 2018;217(5):1797–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pergande MR, Serna-Perez F, Mohsin SB, Hanek J, Cologna SM. Lipidomic analysis reveals altered fatty acid metabolism in the liver of the symptomatic Niemann-Pick, Type C1 mouse model. Proteomics. 2019;19(18):e1800285.

    Article  PubMed  Google Scholar 

  134. Tobias F, Pathmasiri KC, Cologna SM. Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1(-/-) mouse model. Anal Bioanal Chem. 2019;411(22):5659–68.

    Article  CAS  PubMed  Google Scholar 

  135. Boenzi S, Catesini G, Sacchetti E, Tagliaferri F, Dionisi-Vici C, Deodato F. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease. Mol Genet Metab. 2021;134(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  136. Fan M, Sidhu R, Fujiwara H, Tortelli B, Zhang J, Davidson C, et al. Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res. 2013;54(10):2800–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Marquer C, Tian H, Yi J, Bastien J, Dall’Armi C, Yang-Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell. 1999;99(5):521–32.

    Article  CAS  PubMed  Google Scholar 

  139. Peters PJ, Hsu VW, Ooi CE, Finazzi D, Teal SB, Oorschot V, et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlap** membrane compartments. J Cell Biol. 1995;128(6):1003–17.

    Article  CAS  PubMed  Google Scholar 

  140. Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol. 2001;154(5):1007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schweitzer JK, Pietrini SD, D’Souza-Schorey C. ARF6-mediated endosome recycling reverses lipid accumulation defects in Niemann-Pick Type C disease. PLoS One. 2009;4(4):e5193.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pergande MR, Zarate E, Haney-Ball C, Davidson CD, Scesa G, Givogri MI, et al. Standard-flow LC and thermal focusing ESI elucidates altered liver proteins in late stage Niemann-Pick, type C1 disease. Bioanalysis. 2019;11(11):1067–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Quantitative, label-free proteomics in the symptomatic Niemann-Pick, Type C1 mouse model using standard flow liquid chromatography and thermal focusing electrospray ionization. Proteomics. 2019;19(9):e1800432.

    Article  PubMed  Google Scholar 

  144. Pathmasiri KC, Pergande MR, Tobias F, Rebiai R, Rosenhouse-Dantsker A, Bongarzone ER, et al. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J Lipid Res. 2020;61(7):1004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vivas O, Tiscione SA, Dixon RE, Ory DS, Dickson EJ. Niemann-Pick Type C disease reveals a link between lysosomal cholesterol and PtdIns(4,5)P2 that regulates neuronal excitability. Cell Rep. 2019;27(9):2636–48 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kutchukian C, Vivas O, Casas M, Jones JG, Tiscione SA, Simo S, et al. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO J. 2021;40(13):e105990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tiscione SA, Casas M, Horvath JD, Lam V, Hino K, Ory DS, et al. IP3R-driven increases in mitochondrial Ca(2+) promote neuronal death in NPC disease. Proc Natl Acad Sci U S A. 2021;118(40)

    Google Scholar 

  148. Morioka S, Nakanishi H, Yamamoto T, Hasegawa J, Tokuda E, Hikita T, et al. A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation. Nat Commun. 2022;13(1):83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tobias F, Olson MT, Cologna SM. Mass spectrometry imaging of lipids: untargeted consensus spectra reveal spatial distributions in Niemann-Pick disease type C1. J Lipid Res. 2018;59(12):2446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie M. Cologna or Avia Rosenhouse-Dantsker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cologna, S.M., Pathmasiri, K.C., Pergande, M.R., Rosenhouse-Dantsker, A. (2023). Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. In: Dantsker, A.R. (eds) Cholesterol and PI(4,5)P2 in Vital Biological Functions. Advances in Experimental Medicine and Biology, vol 1422. Springer, Cham. https://doi.org/10.1007/978-3-031-21547-6_5

Download citation

Publish with us

Policies and ethics

Navigation