Frequency Enhancement of Power System with High Renewable Energy Penetration Using Virtual Inertia Control Based ESS and SMES

  • Conference paper
  • First Online:
Advanced Computational Techniques for Renewable Energy Systems (IC-AIRES 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 591))

Abstract

Because of the significant development in the usage of power converter-based renewable energy sources (RESs), the entire system inertia in a microgrid may be greatly reduced, increasing the interconnected power system's sensitivity to instability. A virtual inertia control application is needed to overcome this problem. This study uses inertia control strategies in an interconnected power system with RESs, such as the inertia control-based derivative method, first with normal energy storage system (ESS)-based virtual inertia control (VIC), and then with superconducting magnetic energy storage (SMES)-based VIC, to improve frequency stability. Both suggested control method's efficacy and control performance are compared. To model the system and simulate the results MATLAB/Simulink is used. For maintaining system frequency, a proportional integral derivative (PID) is utilized as a secondary control. The gain settings of the regulators are optimized via Harris hawk optimization (HHO). Finally, to verify the efficiency of the virtual inertia control method on stability improvement, a multi-area test system with high RESs penetration level is applied for various scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deepak, M., et al.: A novel approach to frequency support in a wind integrated power system. Renewable Energy 108, 194–206 (2017)

    Article  Google Scholar 

  2. Fathi, A., Shafiee, Q., Bevrani, H.: Robust frequency control of microgrids using an extended virtual synchronous generator. IEEE Trans. Power Syst. 33(6), 6289–6297 (2018)

    Article  Google Scholar 

  3. Rakhshani, E., Rodriguez, P.: Inertia emulation in AC/DC interconnected power systems using derivative technique considering frequency measurement effects. IEEE Trans. Power Syst. 32(5), 3338–3351 (2016)

    Article  Google Scholar 

  4. Kerdphol, T., Rahman, F., Mitani, Y.: Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11(4), 981 (2018). https://doi.org/10.3390/en11040981

    Article  Google Scholar 

  5. Bevrani, H., Ise, T., Miura, Y.: Virtual synchronous generators: a survey and new perspectives. Int. J. Electr. Power Energy Syst. 54, 244–254 (2014)

    Article  Google Scholar 

  6. Ali, M.H., Wu, B., Dougal, R.A.: An overview of SMES applications in power and energy systems. IEEE Trans. Sustain. Energy 1(1), 38–47 (2010)

    Google Scholar 

  7. Muttaqi, K.M., Rabiul Islam, M., Sutanto, D.: Future power distribution grids: integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Trans. Appl. Supercon. 29(2), 1–5 (2019)

    Article  Google Scholar 

  8. Abu-Siada, A., Islam, S.: Application of SMES unit in improving the performance of an AC/DC power system. IEEE Trans. Sustain. Energy 2(2), 109–121 (2010)

    Article  Google Scholar 

  9. Kerdphol, T., Watanabe, M., Mitani, Y., Phunpeng, V.: Applying virtual inertia control topology to SMES system for frequency stability improvement of low-inertia microgrids driven by high renewables. Energies 12(20), 3902 (2019)

    Article  Google Scholar 

  10. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abbou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbou, H., Arif, S., Delassi, A. (2023). Frequency Enhancement of Power System with High Renewable Energy Penetration Using Virtual Inertia Control Based ESS and SMES. In: Hatti, M. (eds) Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-031-21216-1_62

Download citation

Publish with us

Policies and ethics

Navigation