Distributed Spacing Control for Multiple, Buoyancy-Controlled Underwater Robots

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 25))

Included in the following conference series:

  • 703 Accesses

Abstract

This paper presents a distributed coordination algorithm for multiple, buoyancy controlled underwater robots to achieve a moving formation in a shear flow. This work is motivated by the deployment of a swarm of ocean-going robots called Driftcam to observe the pelagic scattering layer. Driftcam horizontal motion is determined by the flow field and the vertical motion is regulated by the buoyancy control. Pairwise range measurements are available to the Driftcam network via acoustic transponders. A formation buoyancy controller is designed using the backstep** method; deviation from the desired formation is measured by a potential function. Numerical simulations illustrate the efficacy of the control algorithm and motivate ongoing and future efforts to estimate of the scattering layer density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkenpas, E.J., Henning, B.S., Shepard, C.M., Turchik, A.J.: The driftcam: a buoyancy controlled pelagic camera trap. In: Proceedings of the MTS/IEEE OCEANS 2013, pp. 1–6 (2013). https://doi.org/10.23919/OCEANS.2013.6741018

  2. Berkenpas, E.J., Henning, B.S., Shepard, C.M., Turchik, A.J., Robinson, C.J., Portner, E.J., Li, D.H., Daniel, P.C., Gilly, W.F.: A buoyancy-controlled Lagrangian camera platform for In Situ imaging of marine organisms in midwater scattering layers. IEEE J. Oceanic Eng. 43(3), 595–607 (2018). https://doi.org/10.1109/JOE.2017.2736138

    Article  Google Scholar 

  3. Berkenpas, E.J., Shepard, C.M., Suitor, R., Zaidins, P., Paley, D., Abernathy, K.: Swarming driftcams: a novel platform for locating and tracking pelagic scattering layers. In: Proceedings of the MTS/IEEE OCEANS 2021, pp. 1–6 (2021). https://doi.org/10.23919/OCEANS44145.2021.9705972

  4. Brodeur, R., Pakhomov, E.: Nekton. In: Cochran, J.K., Bokuniewicz, H.J., Yager, P.L. (eds.) Encyclopedia of Ocean Sciences, 3rd edn, pp. 582–587. Academic Press, Oxford (2019). https://url.org/10.1016/B978-0-12-409548-9.11460-5

  5. Cortés, J., Egerstedt, M.: Coordinated control of multi-robot systems: a survey. SICE J. Control, Meas., Syst. Integr. 10(6), 495–503 (2017). https://doi.org/10.9746/jcmsi.10.495

    Article  Google Scholar 

  6. Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., Theraulaz, G.: Deciphering interactions in moving animal groups. PLOS Comput. Biol. 8(9), 1–11 (2012). https://doi.org/10.1371/journal.pcbi.1002678

    Article  MathSciNet  Google Scholar 

  7. Kemna, S., Caron, D.A., Sukhatme, G.S.: Constraint-induced formation switching for adaptive environmental sampling. In: Proceedings of the MTS/IEEE OCEANS 2015, pp. 1–7 (2015)

    Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Prentice (2002)

    MATH  Google Scholar 

  9. Knutsen, T., Wiebe, P.H., Gjøsæter, H., Ingvaldsen, R.B., Lien, G.: High latitude epipelagic and mesopelagic scattering layers-a reference for future arctic ecosystem change. Front. Mar. Sci. 4, 334 (2017). https://doi.org/10.3389/fmars.2017.00334

    Article  Google Scholar 

  10. Lavery, A.C., Chu, D., Moum, J.N.: Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J. Mar. Sci. 67(2), 379–394 (2009). https://doi.org/10.1093/icesjms/fsp242

    Article  Google Scholar 

  11. Meghjani, M., Shkurti, F., Higuera, J.C.G., Kalmbach, A., Whitney, D., Dudek, G.: Asymmetric rendezvous search at sea. In: Proceedings of the Canadian Conference on Computer and Robot Vision, pp. 175–180 (2014)

    Google Scholar 

  12. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006). https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  MATH  Google Scholar 

  13. Ouimet, M., Cortes, J.: Robust, distributed estimation of internal wave parameters via inter-drogue measurements. IEEE Trans. Control Syst. Technol. 22(3), 980–994 (2014). https://doi.org/10.1109/TCST.2013.2270952

    Article  Google Scholar 

  14. Ouimet, M., Cortés, J.: Coordinated rendezvous of underwater drifters in ocean internal waves. In: Proceedings of the IEEE Conference on Decision and Control, pp. 6099–6104 (2014). https://doi.org/10.1109/CDC.2014.7040344

  15. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: all-to-all communication. IEEE Trans. Autom. Control 53(5), 811–824 (2007). https://doi.org/10.1109/TAC.2007.898077

    Article  MathSciNet  MATH  Google Scholar 

  16. Suitor, R., Berkenpas, E., Shepard, C.M., Abernathy, K., Paley, D.A.: Dynamics and control of a buoyancy-driven underwater vehicle for estimating and tracking the scattering layer. In: Preparation

    Google Scholar 

  17. Wei, C., Tanner, H.G.: Synchronization of geophysically-driven oscillators with short-range interaction. IEEE Trans. Autom. Control 67(3), 1 (2021). https://doi.org/10.1109/TAC.2021.3058960

    Article  MathSciNet  MATH  Google Scholar 

  18. Yordanova, V., Griffiths, H.: Synchronous rendezvous technique for multi-vehicle mine countermeasure operations. In: Proceedings of the MTS/IEEE OCEANS 2015, pp. 1–6 (2015)

    Google Scholar 

  19. Zavlanos, M., Pappas, G.: Controlling connectivity of dynamic graphs. In: Proceedings of the IEEE Conference on Decision and Control, pp. 6388–6393 (2005). https://doi.org/10.1109/CDC.2005.1583186

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, C., Paley, D.A. (2023). Distributed Spacing Control for Multiple, Buoyancy-Controlled Underwater Robots. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_6

Download citation

Publish with us

Policies and ethics

Navigation