CdZnTeSe: Recent Advances for Radiation Detector Applications

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection
  • 508 Accesses

Abstract

The quest for cost-effective, high performing room temperature semiconductor detector (RTSD) materials for high-energy gamma rays has been continuing for more than three decades. The requirements for RTSD materials, however, are more stringent as compared to other applications unrelated to detection of X- and gamma rays, mainly due to the requirement of thick detectors for sufficient absorption of high-energy electromagnetic radiation. The II–VI compound CdZnTe (CZT) with the composition of 10 atomic % of Zn (Cd0.9Zn0.1Te) has been the material of choice over the past several years, and it has dominated the market for RTSD materials. Despite its commercial success as a room-temperature radiation detection material, CZT suffers from a lack of compositional homogeneity on both a micro- and macro-scale and the presence of high concentrations of sub-grain boundary (dislocation walls) networks and secondary phases (Te-rich inclusions). This chapter focuses on the presence of performance-limiting defects in CZT that hinder the yield and elevate the cost of high-quality detectors. The presence of such performance-limiting defects has restricted widespread deployment of CZT for a variety of potential applications, particularly for uses of relatively large detectors where the demands on material perfection are significantly greater. In the recent past, replacing some of the tellurium with selenium in the CZT matrix was found to be very effective in a drastic reduction of Te-rich secondary phases and dislocation networks, plus allowing for better compositional homogeneity. The reduced concentrations of these intrinsic defects in the quaternary compound Cd1−xZnxTe1−ySey (CZTS) ensure improved spatial homogeneity of the charge-transport characteristics, which in turn enhances the detector performance and yield. This chapter will provide an overview of recent developments to optimize the composition and charge transport of the quaternary CdZnTeSe material as a potential next-generation detector material operable at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schlesinger, T. E., et al. (2001). Cadmium zinc telluride and its use as a nuclear radiation detector material. Materials Science and Engineering R, 32, 103.

    Article  Google Scholar 

  2. Yang, G., & James, R. B. (2009). Applications of CdTe, CdZnTe, and CdMnTe radiation detectors. In Physics, defects, hetero- and nano-structures, crystal growth, surfaces and applications part II, (EDAX, Triboulet R. et al.) (p. 214). Elsevier.

    Google Scholar 

  3. Harrison, F. A., et al. (2013). The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. The Astrophysical Journal, 770, 103.

    Article  Google Scholar 

  4. Krawczynski, H. S., et al. (2016). X-ray polarimetry with the polarization spectroscopic telescope array (PolSTAR). Astroparticle Physics, 75, 8.

    Article  Google Scholar 

  5. Slomka, P. J., et al. (2019). Solid-state detector SPECT myocardial perfusion imaging. Journal of Nuclear Medicine, 60, 1194.

    Article  Google Scholar 

  6. Triboulet, R. (2005). Fundamentals of the CdTe and CdZnTe bulk growth. Physica Status Solidi (c), 5, 1556.

    Article  Google Scholar 

  7. Rudolph, P. (1994). Fundamental studies on Bridgman growth of CdTe. Progress in Crystal Growth and Characterization of Materials, 29, 275.

    Article  Google Scholar 

  8. **g, W., & Chi, L. (2019). Recent advances in cardiac SPECT instrumentation and imaging methods. Physics in Medicine and Biology, 64, 06TR01.

    Article  Google Scholar 

  9. Sakamoto, T., et al. (2011). The second swift burst alert telescope gamma-ray burst catalog. The Astrophysical Journal Supplement Series, 195, 1.

    Article  Google Scholar 

  10. Takahashi, T., et al. (2001). High-resolution CdTe detector and applications to imaging devices. IEEE Transactions on Nuclear Science, 48, 287.

    Article  Google Scholar 

  11. MacKenzie, J., et al. (2013). Advancements in THM-grown CdZnTe for use as substrates for HgCdTe. Journal of Electronic Materials, 42, 3129.

    Article  Google Scholar 

  12. Iniewski, K. (2014). CZT detector technology for medical imaging. Journal of Instrumentation, 9, 1.

    Article  Google Scholar 

  13. Kargar, A., et al. (2011). Charge collection efficiency characterization of a HgI2 Frisch collar spectrometer with collimated high energy gamma rays. Nuclear Instruments and Methods in Physics Research A, 652, 186.

    Article  Google Scholar 

  14. Hitomi, K., et al. (2013). TlBr capacitive Frisch grid detectors. IEEE Transactions on Nuclear Science, 60, 1156.

    Article  Google Scholar 

  15. He, Y., et al. (2018). High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications, 9, 1609.

    Article  Google Scholar 

  16. Johns, P. M., & Nino, J. C. (2019). Room temperature semiconductor detectors for nuclear security. Journal of Applied Physics, 126, 040902.

    Article  Google Scholar 

  17. Takahashi, T., & Watanabe, S. (2001). Recent progress in CdTe and CdZnTe detectors. IEEE Transactions on Nuclear Science, 48, 950.

    Article  Google Scholar 

  18. Szeles, C., & Eissler, E. E. (1998). Current issues of high-pressure Bridgman growth of semi-insulating CdZnTe. Materials Research Society Symposium Proceedings, 484, 309.

    Article  Google Scholar 

  19. Szeles, C., et al. (2004). Development of the high-pressure electro-dynamic gradient crystal-growth technology for semi-insulating CdZnTe growth for radiation detector applications. Journal of Electronic Materials, 33, 742.

    Article  Google Scholar 

  20. Triboulet, R., et al. (1990). “Cold travelling heater method”, a novel technique of synthesis, purification and growth of CdTe and ZnTe. Journal of Crystal Growth, 101, 216.

    Article  Google Scholar 

  21. El Morki, A., et al. (1994). Growth of large, high purity, low cost, uniform CdZnTe crystals by the “cold travelling heater method”. Journal of Crystal Growth, 138, 168.

    Article  Google Scholar 

  22. Shiraki, H., et al. (2009). THM growth and characterization of 100 mm diameter CdTe single crystals. IEEE Transactions on Nuclear Science, 56, 1717.

    Article  Google Scholar 

  23. Zhang, N., et al. (2011). Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride. Journal of Crystal Growth, 325, 10.

    Article  Google Scholar 

  24. Perfeniuk, C., et al. (1992). Measured critical resolved shear stress and calculated temperature and stress fields during growth of CdZnTe. Journal of Crystal Growth, 119, 261.

    Article  Google Scholar 

  25. Datta, A., et al. (2011). Experimental studies on control of growth interface in MVB grown CdZnTe and its consequences. In IEEE Nuclear Science Symposium Conference Record 4720. IEEE.

    Google Scholar 

  26. Zhou, B., et al. (2018). Modification of growth interface of CdZnTe crystals in THM process by ACRT. Journal of Crystal Growth, 483, 281.

    Article  Google Scholar 

  27. Roy, U. N., et al. (2010). Growth and interface study of 2 in diameter CdZnTe by THM technique. Journal of Crystal Growth, 312, 2840.

    Article  Google Scholar 

  28. Gul, R., et al. (2017). A comparison of point defects in Cd1−xZnxTe1−ySey crystals grown by Bridgman and traveling heater methods. Journal of Applied Physics, 121, 125705.

    Article  Google Scholar 

  29. Carini, G. A., et al. (2007). High-resolution X-ray map** of CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579, 120.

    Article  Google Scholar 

  30. Bolotnikov, A. E., et al. (2013). Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. Journal of Crystal Growth, 379, 46.

    Article  Google Scholar 

  31. Yang, G., et al. (2013). Post-growth thermal annealing study of CdZnTe for develo** room-temperature X-ray and gamma-ray detectors. Journal of Crystal Growth, 379, 16.

    Article  Google Scholar 

  32. Bolotnikov, A. E., et al. (2016). CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm. Applied Physics Letters, 108, 093504.

    Article  Google Scholar 

  33. Szeles, C., et al. (2002). Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Transactions on Nuclear Science, 49, 2535.

    Article  Google Scholar 

  34. Triboulet, R. (2003). Crystal growth technology. In H. J. Scheel & T. Fukuda (Eds.), CdTe and CdZnTe growth (p. 373). Wiley.

    Google Scholar 

  35. Guergouri, K., et al. (1988). Solution hardening and dislocation density reduction in CdTe crystals by Zn addition. Journal of Crystal Growth, 86, 61.

    Article  Google Scholar 

  36. Imhoff, D., et al. (1991). Zn influence on the plasticity of Cd0.96Zn0.04Te. Journal de Physique III France, 1, 1841.

    Google Scholar 

  37. Buis, C., et al. (2013). Effects of dislocation walls on image quality when using cadmium telluride X-ray detectors. IEEE Transactions on Nuclear Science, 60, 199.

    Article  Google Scholar 

  38. Johnson, C. J. (1989). Recent Progress in lattice matched substrates for HgCdTe epitaxy. SPIE, 1106, 56.

    Google Scholar 

  39. Tanaka, A., et al. (1989). Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe. Journal of Crystal Growth, 94, 166.

    Article  Google Scholar 

  40. Fiederle, M., et al. (1994). Comparison of CdTe, Cd0.9Zn0.1Te and CdTe0.9Se0.1 crystals: Application for γ- and X-ray detectors. Journal of Crystal Growth, 138, 529.

    Article  Google Scholar 

  41. Roy, U. N., et al. (2014). Growth of CdTexSe1−x from a Te-rich solution for applications in radiation detection. Journal of Crystal Growth, 386, 43.

    Article  Google Scholar 

  42. Roy, U. N., et al. (2015). High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method. Applied Physics Letters Materials, 3, 026102.

    Google Scholar 

  43. Roy, U. N., et al. (2014). Evaluation of CdTexSe1−x crystals grown from a Te-rich solution. Journal of Crystal Growth, 389, 99.

    Article  Google Scholar 

  44. Hannachi, L., & Bouarissa, N. (2008). Electronic structure and optical properties of CdSexTe1−x mixed crystals. Superlattices and Microstructures, 44, 794.

    Article  Google Scholar 

  45. Roy, U. N., et al. (2019). Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Scientific Reports, 9, 1620.

    Article  Google Scholar 

  46. Roy, U. N., et al. (2020). X-ray topographic study of Bridgman-grown CdZnTeSe. Journal of Crystal Growth, 546, 125753.

    Article  Google Scholar 

  47. Egarievwe, S. U., et al. (2020). Optimizing CdZnTeSe Frisch-grid nuclear detector for gamma-ray spectroscopy. IEEE Access, 8, 137530.

    Article  Google Scholar 

  48. Hwang, S., et al. (2019). Anomalous Te inclusion size and distribution in CdZnTeSe. IEEE Transactions on Nuclear Science, 66, 2329.

    Article  Google Scholar 

  49. Roy, U. N., et al. (2019). High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects. Applied Physics Letters, 114, 232107.

    Article  Google Scholar 

  50. Klep**er, J. W., et al. (2021). Growth of Cd0.9Zn0.1Te1−ySey single crystals for room-temperature gamma ray detection. IEEE Transactions on Nuclear Science, 68, 2429.

    Article  Google Scholar 

  51. Roy, U. N., et al. (2019). Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports, 9, 7303.

    Article  Google Scholar 

  52. Nag, R., et al. (2021). Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal for room-temperature radiation detection. Journal of Materials Science: Materials in Electronics, 32, 26740.

    Google Scholar 

  53. Herraiz, L. M., et al. (2021). Vertical gradient freeze growth of two inches Cd1−xZnxTe1−ySey ingots with different Se content. Journal of Crystal Growth, 537, 126291.

    Article  Google Scholar 

  54. Franc, J., et al. (2020). Microhardness study of Cd1-x ZnxTe1-ySey crystals for X-ray and gamma ray detectors. Materials Today Communications, 24, 101014.

    Article  Google Scholar 

  55. Chang, C. Y., & Tseng, B. H. (1997). Crystal growth of CdTe alloyed with Zn, Se and S. Materials Science and Engineering: B, 49(1), 1.

    Article  Google Scholar 

  56. Gul, R., et al. (2015). Research update: Point defects in CdTexSe1−x crystals grown from a Te-rich solution for applications in detecting radiation. Applied Physics Letters Materials, 3, 040702.

    Google Scholar 

  57. Yakimov, A., et al. (2019). Growth and characterization of detector-grade CdZnTeSe by horizontal Bridgman technique. SPIE Proceedings, 11114, 111141N.

    Google Scholar 

  58. Chaudhuri, S. K., et al. (2020). Pulse-shape analysis in Cd0.9Zn0.1Te0.98Se0.02 room-temperature radiation detectors. Applied Physics Letters, 116, 162107.

    Article  Google Scholar 

  59. Chaudhuri, S. K., et al. (2020). Charge transport properties in CdZnTeSe semiconductor room-temperature γ-ray detectors. Journal of Applied Physics, 127, 245706.

    Article  Google Scholar 

  60. Dědič, V., et al. (2021). Map** of inhomogeneous quasi-3D electrostatic field in electro-optic materials. Scientific Reports, 11, 2154.

    Article  Google Scholar 

  61. Pipek, J., et al. (2021). Charge transport and space-charge formation in Cd1−xZnxTe1−ySey radiation detectors. Physical Review Applied, 15, 054058.

    Article  Google Scholar 

  62. Park, B., et al. (2022). Bandgap engineering of Cd1− xZnxTe1− ySey (0< x< 0.27, 0< y< 0.026). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1036, 166836.

    Article  Google Scholar 

  63. Chaudhuri, S. K., et al. (2021). Quaternary Semiconductor Cd1− xZnxTe1− ySey for High-Resolution, Room-Temperature Gamma-Ray Detection. Crystals, 11, 7.

    Article  Google Scholar 

  64. Franc, J., et al. (2021). Spectral Dependence of the Photoplastic Effect in CdZnTe and CdZnTeSe. Materials, 14, 1465.

    Article  Google Scholar 

  65. Egarievwe, S. U., et al. (2019). Ammonium fluoride passivation of CdZnTeSe sensors for applications in nuclear detection and medical imaging. Sensors, 19, 3217.

    Article  Google Scholar 

  66. Rejhon, M., et al. (2018). Influence of deep levels on the electrical transport properties of CdZnTeSe detectors. Journal of Applied Physics, 124, 235702.

    Article  Google Scholar 

  67. Guskov, V. N., et al. (2004). Vapour pressure investigation of CdZnTe. Journal of Alloys and Compounds, 371, 118.

    Article  Google Scholar 

  68. Brill, G., et al. (2005). Molecular beam epitaxial growth and characterization of Cd-based II-VI wide-bandgap compounds on Si substrates. Journal of Electronic Materials, 34, 655.

    Article  Google Scholar 

  69. Roy, U. N., et al. (2021). Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications. Applied Physics Letters, 118, 152101.

    Article  Google Scholar 

  70. Roy, U. N., et al. (2019). Characterization of large-volume Frisch grid detector fabricated from as-grown CdZnTeSe. Applied Physics Letters, 115, 242102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal N. Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, U.N., James, R.B. (2023). CdZnTeSe: Recent Advances for Radiation Detector Applications. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation