Neural-Sim: Learning to Generate Training Data with NeRF

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

Abstract

Training computer vision models usually requires collecting and labeling vast amounts of imagery under a diverse set of scene configurations and properties. This process is incredibly time-consuming, and it is challenging to ensure that the captured data distribution maps well to the target domain of an application scenario. Recently, synthetic data has emerged as a way to address both of these issues. However, existing approaches either require human experts to manually tune each scene property or use automatic methods that provide little to no control; this requires rendering large amounts of random data variations, which is slow and is often suboptimal for the target domain. We present the first fully differentiable synthetic data pipeline that uses Neural Radiance Fields (NeRFs) in a closed-loop with a target application’s loss function. Our approach generates data on-demand, with no human labor, to maximize accuracy for a target task. We illustrate the effectiveness of our method on synthetic and real-world object detection tasks. We also introduce a new “YCB-in-the-Wild” dataset and benchmark that provides a test scenario for object detection with varied poses in real-world environments. Code and data could be found at .

H. Behl and J. Xu—Equal contribution as second author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we have dropped the dependence of loss \(\ell \) on labels y.

References

  1. Jahanian, A., Lucy Chai, P.I.: On the "steerability" of generative adversarial networks. CoRR (2019)

    Google Scholar 

  2. Barbu, A., et al.: Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper/2019/file/97af07a14cacba681feacf3012730892-Paper.pdf

  3. Barbu, A., et al.: Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  4. Behl, H.S., Baydin, A.G., Gal, R., Torr, P.H.S., Vineet, V.: Autosimulate: (quickly) learning synthetic data generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 255–271. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_16

    Chapter  Google Scholar 

  5. Bi, S., et al.: Neural reflectance fields for appearance acquisition. ar**v preprint ar**v:2008.03824 (2020)

  6. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm

  7. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: The ycb object and model set and benchmarking protocols. ar**v preprint ar**v:1502.03143 (2015)

  8. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danilo Jimenez Rezende, S.M.: Variational inference with normalizing flows. In: ICML (2015)

    Google Scholar 

  10. Denninger, M., et al.: Blenderproc. ar**v preprint ar**v:1911.01911 (2019)

  11. Devaranjan, J., Kar, A., Fidler, S.: Meta-Sim2: Unsupervised learning of scene structure for synthetic data generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 715–733. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_42

    Chapter  Google Scholar 

  12. Diederik Kingma, M.W.: Autoencoding variational bayes. In: ICLR (2014)

    Google Scholar 

  13. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3d human pose estimation: motion to the rescue. In: NeurIPS (2019)

    Google Scholar 

  14. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: ICCV (2017)

    Google Scholar 

  15. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for hyperparameter optimization and meta-learning. In: International Conference on Machine Learning, pp. 1568–1577. PMLR (2018)

    Google Scholar 

  16. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8649–8658 (2021)

    Google Scholar 

  17. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S.M.A., Vinyals, O.: Synthesizing programs for images using reinforced adversarial learning. In: ICML (2018)

    Google Scholar 

  18. Ge, Y., Abu-El-Haija, S., **n, G., Itti, L.: Zero-shot synthesis with group-supervised learning. ar**v preprint ar**v:2009.06586 (2020)

  19. Ge, Y., Xu, J., Zhao, B.N., Itti, L., Vineet, V.: Dall-e for detection: Language-driven context image synthesis for object detection. ar**v preprint ar**v:2206.09592 (2022)

  20. Ge, Y., Zhao, J., Itti, L.: Pose augmentation: Class-agnostic object pose transformation for object recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 138–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_9

    Chapter  Google Scholar 

  21. Georgiev, I., et al.: Arnold: A brute-force production path tracer. TOG 37, 1–12 (2018)

    Article  Google Scholar 

  22. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  23. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Understanding real world indoor scenes with synthetic data. In: CVPR (2016)

    Google Scholar 

  24. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

    Google Scholar 

  25. Higgins, I., et al.: beta-vae: Learning basic visual concepts with a constrained variational framework. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France (2017)

    Google Scholar 

  26. Hodaň, T., et al.: BOP: Benchmark for 6d object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_2

    Chapter  Google Scholar 

  27. Hodaň, T., et al.: Photorealistic image synthesis for object instance detection. In: ICIP (2019)

    Google Scholar 

  28. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 1647–1655 (2017). https://doi.org/10.1109/CVPR.2017.179

  29. Jang, W., Agapito, L.: Codenerf: Disentangled neural radiance fields for object categories. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12949–12958 (2021)

    Google Scholar 

  30. Kar, A., et al.: Meta-sim: Learning to generate synthetic datasets. In: ICCV (2019)

    Google Scholar 

  31. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  32. Louppe, G., Cranmer, K.: Adversarial variational optimization of non-differentiable simulators. In: AISTATS (2019)

    Google Scholar 

  33. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  34. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  35. Ng, A.: Mlops: From model-centric to data-centric ai. https://www.deeplearning.ai/wp-content/uploads/2021/06/MLOps-From-Model-centric-to-Data-centric-AI.pdf

  36. Park, K., et al.: Nerfies: Deformable neural radiance fields. In: ICCV (2021)

    Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: PAMI (2017)

    Google Scholar 

  38. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: ICCV (2017)

    Google Scholar 

  39. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  40. Ros, G., Sellart, L., Materzynska, J., Vázquez, D., López, A.M.: The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)

    Google Scholar 

  41. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. In: ICLR (2019)

    Google Scholar 

  42. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: PAMI (2017)

    Google Scholar 

  43. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)

    Google Scholar 

  44. Tremblay, J., To, T., Birchfield, S.: Falling things: A synthetic dataset for 3d object detection and pose estimation. In: CVPR (2018)

    Google Scholar 

  45. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992)

    Article  MATH  Google Scholar 

  46. **ang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. ar**v preprint ar**v:1711.00199 (2017)

  47. **aogang, X.u., Ying-Cong Chen, J.J.: View independent generative adversarial network for novel view synthesis. In: ICCV (2019)

    Google Scholar 

  48. Yang, D., Deng, J.: Learning to generate synthetic 3d training data through hybrid gradient. In: CVPR (2020)

    Google Scholar 

  49. Yen-Chen, L.: Nerf-pytorch. https://github.com/yenchenlin/nerf-pytorch/ (2020)

  50. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. (TOG) 40(6), 1–18 (2021)

    Article  Google Scholar 

  51. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Yen-Chen Lin for help on using the nerf-pytorch code. This work was supported in part by C-BRIC (one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA), DARPA (HR00112190134) and the Army Research Office (W911NF2020053). The authors affirm that the views expressed herein are solely their own, and do not represent the views of the United States government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhao Ge .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5556 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, Y. et al. (2022). Neural-Sim: Learning to Generate Training Data with NeRF. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation