TDViT: Temporal Dilated Video Transformer for Dense Video Tasks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Deep video models, for example, 3D CNNs or video transformers, have achieved promising performance on sparse video tasks, i.e., predicting one result per video. However, challenges arise when adapting existing deep video models to dense video tasks, i.e., predicting one result per frame. Specifically, these models are expensive for deployment, less effective when handling redundant frames and difficult to capture long-range temporal correlations. To overcome these issues, we propose a Temporal Dilated Video Transformer (TDViT) that consists of carefully-designed temporal dilated transformer blocks (TDTB). TDTB can efficiently extract spatiotemporal representations and effectively alleviate the negative effect of temporal redundancy. Furthermore, by using hierarchical TDTBs, our approach obtains an exponentially expanded temporal receptive field and therefore can model long-range dynamics. Extensive experiments are conducted on two different dense video benchmarks, i.e., ImageNet VID for video object detection and YouTube VIS for video instance segmentation. Excellent experimental results demonstrate the superior efficiency, effectiveness, and compatibility of our method. The code is available at https://github.com/guanxiongsun/TDViT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-El-Haija, S., et al.: Youtube-8m: A large-scale video classification benchmark. ar**v preprint ar**v:1609.08675 (2016)

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A video vision transformer. In: ICCV (2021)

    Google Scholar 

  3. Athar, A., Mahadevan, S., Os̆ep, A., Leal-Taixé, L., Leibe, B.: STEm-Seg: Spatio-temporal embeddings for instance segmentation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_10

    Chapter  Google Scholar 

  4. Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances in video with mask propagation. In: CVPR (2020)

    Google Scholar 

  5. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML (2021)

    Google Scholar 

  6. Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: Spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1

    Chapter  Google Scholar 

  7. Cao, Y., Xu, J., Lin, S.C.F., Wei, F., Hu, H.: Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In: ICCVW (2019)

    Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  9. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  10. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for video object detection. In: CVPR (2020)

    Google Scholar 

  11. Cui, Y., Yan, L., Cao, Z., Liu, D.: Tf-blender: Temporal feature blender for video object detection. In: ICCV (2021)

    Google Scholar 

  12. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: ICCV (2019)

    Google Scholar 

  13. Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  14. Duan, H., Zhao, Y., **ong, Y., Liu, W., Lin, D.: Omni-sourced webly-supervised learning for video recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 670–688. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_40

    Chapter  Google Scholar 

  15. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88, 303–338 (2009)

    Article  Google Scholar 

  16. Heilbron, F.C., Victor Escorcia, B.G., Niebles, J.C.: Activitynet: A large-scale video benchmark for human activity understanding. In: CVPR (2015)

    Google Scholar 

  17. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  18. Goyal, R., et al.: The “something something" video database for learning and evaluating visual common sense. In: ICCV (2017)

    Google Scholar 

  19. Guo, C., et al.: Progressive sparse local attention for video object detection. In: ICCV (2019)

    Google Scholar 

  20. Han, K., **ao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. In: NeurIPS (2021)

    Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  23. He, L., et al.: End-to-end video object detection with spatial-temporal transformers. In: ACMMM (2021)

    Google Scholar 

  24. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: Evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  25. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  27. Kolesnikov, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  28. Li, B., Wu, W., Wang, Q., Zhang, F., **ng, J., Yan, J.: Siamrpn++: Evolution of siamese visual tracking with very deep networks. In: CVPR (2019)

    Google Scholar 

  29. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: CVPR (2018)

    Google Scholar 

  30. Lin, T.-Y., et al.: Microsoft COCO: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  31. Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: Spatial granularity network for one-stage video instance segmentation. In: CVPR (2021)

    Google Scholar 

  32. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  33. Liu, Z., et al.: Video swin transformer. ar**v preprint ar**v:2106.13230 (2021)

  34. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV (2017)

    Google Scholar 

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  36. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  37. Sun, G., Hua, Y., Hu, G., Robertson, N.: Mamba: Multi-level aggregation via memory bank for video object detection. In: AAAI (2021)

    Google Scholar 

  38. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI (2017)

    Google Scholar 

  39. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  40. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  41. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  42. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)

    Google Scholar 

  43. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV (2015)

    Google Scholar 

  44. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: ICCV (2019)

    Google Scholar 

  45. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  47. Wang, W., et al.: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. ar**v preprint ar**v:2102.12122 (2021)

  48. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  49. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2021)

    Google Scholar 

  50. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: ICCV (2019)

    Google Scholar 

  51. Wu, H., et al.: Cvt: Introducing convolutions to vision transformers. In: ICCV (2021)

    Google Scholar 

  52. **e, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  53. Xu, Z., Hrustic, E., Vivet, D.: CenterNet heatmap propagation for real-time video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 220–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_14

    Chapter  Google Scholar 

  54. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)

    Google Scholar 

  55. Yang, S., et al.: Crossover learning for fast online video instance segmentation. In: ICCV (2021)

    Google Scholar 

  56. Yin, M., et al.: Disentangled non-local neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_12

    Chapter  Google Scholar 

  57. Yuan, L., et al.: Tokens-to-token vit: Training vision transformers from scratch on imagenet. In: ICCV (2021)

    Google Scholar 

  58. Zhu, X., Dai, J., Yuan, L., Wei, Y.: Towards high performance video object detection. In: CVPR (2018)

    Google Scholar 

  59. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: ICCV (2017)

    Google Scholar 

  60. Zhu, X., **ong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanxiong Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5493 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, G., Hua, Y., Hu, G., Robertson, N. (2022). TDViT: Temporal Dilated Video Transformer for Dense Video Tasks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation