Electronic System to Determine Proximal and Medial Phalanges Strength in a Hand Exoskeleton Robot

  • Conference paper
  • First Online:
XLV Mexican Conference on Biomedical Engineering (CNIB 2022)

Abstract

The development of an electronic system for force measurement in a hand exoskeleton robot is presented, where the placement of these force sensors is performed in confined spaces with the objective of taking measurements in the proximal and distal phalanges of the user to carry out controls focused on motor rehabilitation of the hand and also to provide support and strength enhancement to users. The results obtained indicate that measurements of force exerted by the user can be obtained up to 0.9 kg in flexion movements and up to 1 kg in extension movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 353.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggogeri, F., Mikolajczyk, T., O’Kane, J.: Robotics for rehabilitation of hand movement in stroke survivors. Adv. Mech. Eng. 11, 1687814019841921 (2019). https://doi.org/10.1177/1687814019841921

  2. Pu, S., Pei, Y., Chang, J.: Decoupling finger joint motion in an exoskeletal hand: a design for robot-assisted rehabilitation. IEEE Trans. Ind. Electron. 67, 686–697 (2020)

    Article  Google Scholar 

  3. Lee, Y.: Design of exoskeleton robotic hand/arm system for upper limbs rehabilitation considering mobility and portability. In: 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 540–544 (2014)

    Google Scholar 

  4. Lee, J., Park, W., Kim, S., Bae, J.: Design of a wearable hand rehabilitation system for quantitative evaluation of the stroke hand. In: 2016 16th International Conference On Control, Automation And Systems (ICCAS), pp. 419–422 (2016)

    Google Scholar 

  5. Nycz, C., Bützer, T., Lambercy, O., Arata, J., Fischer, G., Gassert, R.: Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Rob. Autom. Lett. 1, 976–983 (2016)

    Article  Google Scholar 

  6. Guo, S., Zhao, X., Wei, W., Guo, J., Zhao, F., Hu, Y.: Feasibility study of a novel rehabilitation training system for upper limb based on emotional control. In: 2015 IEEE International Conference On Mechatronics And Automation (ICMA), pp. 1507–1512 (2015)

    Google Scholar 

  7. Zhang, S., Guo, S., Gao, B., Hirata, H., Ishihara, H.: Design of a novel telerehabilitation system with a force-sensing mechanism. Sensors 15, 11511–11527 (2015). https://www.mdpi.com/1424-8220/15/5/11511

  8. Jo, I., Bae, J.: A force-controllable compact actuator module for a wearable hand exoskeleton. IFAC Proc. Vol. 47, 4453–4458 (2014)

    Article  Google Scholar 

  9. Zhou, Y., Zhang, P., **ao, K., Luo, J., Yang, J.: Research on a new structure of hand exoskeleton for rehabilitation usage. In: 2017 4th International Conference On Information Science And Control Engineering (ICISCE), pp. 1126–1130 (2017)

    Google Scholar 

  10. Kazerooni, H.: Exoskeletons for human power augmentation. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3459–3464 (2005)

    Google Scholar 

  11. Cortese, M., Cempini, M., De Almeida Ribeiro, P., Soekadar, S., Carrozza, M., Vitiello, N.: A mechatronic system for robot-mediated hand telerehabilitation. IEEE/ASME Trans. Mechatron. 20, 1753–1764 (2015)

    Article  Google Scholar 

  12. Riener, R., et al.: A view on VR-enhanced rehabilitation robotics. In: 2006 International Workshop on Virtual Rehabilitation, pp. 149–154 (2006)

    Google Scholar 

  13. Patar, M., Komeda, T., Low, C., Mahmud, J.: System integration and control of finger orthosis for post stroke rehabilitation. Procedia Technol. 15, 755–764 (2014). https://www.sciencedirect.com/science/article/pii/S2212017314001637

  14. Guo, S., Zhang, W., Guo, J., Gao, J. Hu, Y.: Design and kinematic simulation of a novel exoskeleton rehabilitation hand robot. In: 2016 IEEE International Conference on Mechatronics and Automation, pp. 1125–1130 (2016). https://doi.org/10.1109/ICMA.2016.7558720

  15. Gabriel, D., Kamen, G., Frost, G.: Neural adaptations to resistive exercise. Sports Med. 36, 133–149 (2006). https://doi.org/10.2165/00007256-200636020-00004

    Article  Google Scholar 

  16. Dong, S., Lu, K., Sun, J., Rudolph, K.: Rehabilitation device with variable resistance and intelligent control. Med. Eng. Phys. 27, 249–255 (2005). https://www.sciencedirect.com/science/article/pii/S1350453304001754

  17. Wolf, S., et al.: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296, 2095–2104 (2006)

    Article  Google Scholar 

  18. Bayona, N., Bitensky, J., Salter, K., Teasell, R.: The role of task-specific training in rehabilitation therapies. Topics Stroke Rehabil. 12, 58–65 (2005)

    Article  Google Scholar 

  19. Jones, C., Wang, F., Morrison, R., Sarkar, N., Kamper, D.: Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke. IEEE/ASME Trans. Mechatron. 19, 131–140 (2014)

    Article  Google Scholar 

  20. Wang, J., Li, J., Zhang, Y. Wang, S.: Design of an exoskeleton for index finger rehabilitation. In: Proceedings of the 31st Annual International Conference of the IEEE EMBS (2009)

    Google Scholar 

  21. Sandoval-Gonzalez, O., et al.: Design and development of a hand exoskeleton robot for active and passive rehabilitation. Int. J. Adv. Rob. Syst. 13, 66 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Osvaldo Sandoval-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

German-Alonso, D. et al. (2023). Electronic System to Determine Proximal and Medial Phalanges Strength in a Hand Exoskeleton Robot. In: Trujillo-Romero, C.J., et al. XLV Mexican Conference on Biomedical Engineering. CNIB 2022. IFMBE Proceedings, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-031-18256-3_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18256-3_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18255-6

  • Online ISBN: 978-3-031-18256-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation