Major Groups of Microorganisms Employed in Bioremediation

  • Chapter
  • First Online:
Microbial Bioremediation

Abstract

Due to rapid industrialization and large-scale human activities, pollution levels are increasing rapidly, which is a major problem. Despite the fact that there are other remediation approaches available, using microorganisms has several advantages, including cost-effectiveness, few or no by-products, and reusability. Microorganisms are readily available, easily defined, highly diverse, widespread, and can feed on a variety of hazardous substances. They may be utilized both in-situ and off-site, and they can clean up a variety of difficult environmental situations. Amid rising pollution levels, many countries do not impose restrictions on industrialization; nonetheless, suitable remedial techniques can be employed to reduce these issues, particularly when microorganisms give beneficial tools for better alternatives. Soil bioremediation is a time-consuming and expensive method that uses bacteria, fungi, and algae to remediate contaminated places to environmentally sustainable conditions. Microorganisms that break down organic compounds, as well as microorganisms that come into touch with contaminants are used in this process. The contaminated soil provides an ideal environment for bacteria to thrive several methods have been developed to assure that the latter two constraints are overcome and that pollutant biodegradation is improved. Bioremediation’s future development may result in a reduction in energy consumption, as well as a reduction in pollutants and greenhouse gas emissions. The importance of microorganisms in bioremediation, their advantages over other processes, and the influence of such microscopic organisms on a clean environment will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-a review. Open Journal of Environmental Biology, 2(1), 038–046.

    Article  Google Scholar 

  • Abiala, M., Popoola, O., Olawuyi, O., Oyelude, J., Akanmu, A., Killani, A., et al. (2013). Harnessing the potentials of vesicular Arbuscular Mycorrhizal (VAM) fungi to plant growth-a review. International Journal of Pure & Applied Sciences & Technology, 14(2), 61–79.

    CAS  Google Scholar 

  • Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605.

    Article  Google Scholar 

  • Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178–184.

    Article  Google Scholar 

  • Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: A review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28–39.

    Article  CAS  Google Scholar 

  • Ali, H. (2010). Biodegradation of synthetic dyes—A review. Water, Air, & Soil Pollution, 213(1), 251–273.

    Article  CAS  Google Scholar 

  • Al-Mailem, D., Sorkhoh, N., Al-Awadhi, H., Eliyas, M., & Radwan, S. (2010). Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles, 14(3), 321–328.

    Article  CAS  Google Scholar 

  • Aust, S. D. (1990). Degradation of environmental pollutants byPhanerochaete chrysosporium. Microbial Ecology, 20(1), 197–209.

    Article  CAS  Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

    Article  Google Scholar 

  • Bonaventura, C., & Johnson, F. M. (1997). Healthy environments for healthy people: Bioremediation today and tomorrow. Environmental Health Perspectives, 105(suppl 1), 5–20.

    Article  CAS  Google Scholar 

  • Bruns, M. A., Hanson, J. R., Mefford, J., & Scow, K. M. (2001). Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacteria in compost biofilter enrichments. Environmental Microbiology, 3(3), 220–225.

    Article  CAS  Google Scholar 

  • Caliman, F. A., Robu, B. M., Smaranda, C., Pavel, V. L., & Gavrilescu, M. (2011). Soil and groundwater cleanup: Benefits and limits of emerging technologies. Clean Technologies and Environmental Policy, 13(2), 241–268.

    Article  Google Scholar 

  • Chen, J., Liu, Y.-F., Zhou, L., Mbadinga, S. M., Yang, T., Zhou, J., et al. (2019). Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Applied Microbiology and Biotechnology, 103(5), 2391–2401.

    Article  CAS  Google Scholar 

  • Chowdhury, A., Pradhan, S., Saha, M., & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114–127.

    Article  CAS  Google Scholar 

  • Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P., Melo, D., & Coelho, N. (2015). Bioremediation of polluted waters using microorganisms. Advances in bioremediation of wastewater and polluted soil, 10, 60770.

    Google Scholar 

  • Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143(1–2), 220–225.

    Article  CAS  Google Scholar 

  • Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse metabolic capacities of fungi for bioremediation. Indian Journal of Microbiology, 56(3), 247–264.

    Article  CAS  Google Scholar 

  • Docherty, K. M., Joyce, M. V., Kulacki, K. J., & Kulpa, C. F. (2010). Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chemistry, 12(4), 701–712.

    Article  CAS  Google Scholar 

  • Eskander, S., & Saleh, H. (2017). Biodegradation: Process mechanism. Environmental Science. & Engineering, 8(8), 1–31.

    Google Scholar 

  • Fan, X., Naz, M., Fan, X., Xuan, W., Miller, A. J., & Xu, G. (2017). Plant nitrate transporters: From gene function to application. Journal of Experimental Botany, 68(10), 2463–2475.

    Article  CAS  Google Scholar 

  • Fulekar, M., Pathak, B., Fulekar, J., & Godambe, T. (2013). Bioremediation of organic pollutants using Phanerochaete chrysosporium. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators (pp. 135–157). Springer.

    Chapter  Google Scholar 

  • Garbisu, C., Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17(3), 173–188.

    Article  CAS  Google Scholar 

  • Garcia, C., Hernandez, T., & Costa, F. (1994). Microbial activity in soils under Mediterranean environmental conditions. Soil Biology and Biochemistry, 26(9), 1185–1191.

    Article  CAS  Google Scholar 

  • Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497–526.

    Article  CAS  Google Scholar 

  • Goyal, S., Ramawat, K. G., & Mérillon, J.-M. (2016). Different shades of fungal metabolites: An overview. In J. M. Mérillon & K. Ramawat (Eds.), Fungal metabolites (pp. 1–29). Springer.

    Google Scholar 

  • Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25–39.

    Article  CAS  Google Scholar 

  • Gupta, A., Gupta, R., & Singh, R. L. (2017). Microbes and environment principles and applications of environmental biotechnology for a sustainable future (pp. 43–84). Springer.

    Google Scholar 

  • Haferburg, G., & Kothe, E. (2007). Microbes and metals: Interactions in the environment. Journal of Basic Microbiology, 47(6), 453–467.

    Article  CAS  Google Scholar 

  • Hanson, J. R., Ackerman, C. E., & Scow, K. M. (1999). Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Applied and Environmental Microbiology, 65(11), 4788–4792.

    Article  CAS  Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177–192.

    Article  CAS  Google Scholar 

  • Hart, S. (1996). Peer reviewed: In situ bioremediation: Defining the limits. Environmental Science & Technology, 30(9), 398A–401A.

    Article  CAS  Google Scholar 

  • Hassan, A., Pariatamby, A., Ossai, I. C., & Hamid, F. S. (2020). Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochemical Engineering Journal, 157, 107550.

    Article  CAS  Google Scholar 

  • Hou, N., Zhang, N., Jia, T., Sun, Y., Dai, Y., Wang, Q., et al. (2018). Biodegradation of phenanthrene by biodemulsifier-producing strain Achromobacter sp. LH-1 and the study on its metabolisms and fermentation kinetics. Ecotoxicology and Environmental Safety, 163, 205–214.

    Article  CAS  Google Scholar 

  • Jagdale, S., Hable, A., & Chabukswar, A. (2018). Nanobiotechnology for bioremediation: Recent trends. In A. K. Rathoure (Ed.), Biostimulation remediation technologies for groundwater contaminants (pp. 259–284). IGI Global.

    Chapter  Google Scholar 

  • Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). Fungi in bioremediation of soil organic pollutants. In V. K. Sharma, M. P. Shah, & A. Kumar (Eds.), Fungi bio-prospects in sustainable agriculture, environment and nano-technology (pp. 381–405). Elsevier.

    Chapter  Google Scholar 

  • Jefferson, B., Burgess, J. E., Pichon, A., Harkness, J., & Judd, S. J. (2001). Nutrient addition to enhance biological treatment of greywater. Water Research, 35(11), 2702–2710.

    Article  CAS  Google Scholar 

  • Jiang, C.-y., Sheng, X.-f., Qian, M., & Wang, Q.-y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72(2), 157–164.

    Article  CAS  Google Scholar 

  • Jiang, N., Huang, L., Huang, M., Cai, T., Song, J., Zheng, S., et al. (2021). Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes. Sustainable Environment Research, 31(1), 1–12.

    Article  Google Scholar 

  • Joutey, N. T., Bahafid, W., Sayel, H., & El Ghachtouli, N. (2013). Biodegradation: Involved microorganisms and genetically engineered microorganisms. Biodegradation-life of science, 1, 289–320.

    Google Scholar 

  • Kanmani, P., Aravind, J., & Preston, D. (2012). Remediation of chromium contaminants using bacteria. International journal of Environmental Science and Technology, 9(1), 183–193.

    Article  CAS  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 805187.

    Article  Google Scholar 

  • Karnawat, M., Trivedi, S., Nagar, D., & Nagar, R. (2020). Microorganisms in Bioremediation. Biotica Research Today, 2(8), 794–796.

    Google Scholar 

  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 355–364.

    Article  CAS  Google Scholar 

  • Konings, W. N. (2006). Microbial transport: Adaptations to natural environments. Antonie Van Leeuwenhoek, 90(4), 325–342.

    Article  CAS  Google Scholar 

  • Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39(4), 295–304.

    CAS  Google Scholar 

  • Kujan, P., Prell, A., Šafář, H., Sobotka, M., Řezanka, T., & Holler, P. (2006). Use of the industrial yeast Candida utilis for cadmium sorption. Folia Microbiologica, 51(4), 257–260.

    Article  CAS  Google Scholar 

  • Kumar, L., & Bharadvaja, N. (2020). Microbial remediation of heavy metals. In M. Shah (Ed.), Microbial bioremediation & biodegradation (pp. 49–72). Springer.

    Chapter  Google Scholar 

  • Kumar Ramasamy, R., Congeevaram, S., & Thamaraiselvi, K. (2011). Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization—A mycoremediation approach. Asian Journal of Experimental Biological Sciences, 2, 342–347.

    Google Scholar 

  • Kumar, R., Singh, S., & Singh, O. V. (2007). Bioremediation of radionuclides: Emerging technologies. OMICS: A Journal of Integrative Biology, 11(3), 295–304.

    Article  CAS  Google Scholar 

  • Kumar, A., Bisht, B., Joshi, V., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.

    Google Scholar 

  • Kumar, V., Shahi, S., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In J. Singh, D. Sharma, G. Kumar, & N. Sharma (Eds.), Microbial bioprospecting for sustainable development (pp. 115–136). Springer.

    Chapter  Google Scholar 

  • Kumar, A., Yadav, A. N., Mondal, R., Kour, D., Subrahmanyam, G., Shabnam, A. A., et al. (2021). Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, 284, 131325.

    Article  CAS  Google Scholar 

  • Kyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 15(2), 125–150.

    Article  CAS  Google Scholar 

  • Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic bacteria and archaea. Journal of Molecular Microbiology and Biotechnology, 15(2–3), 74–92.

    Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    Article  CAS  Google Scholar 

  • Lee, Y.-C., & Chang, S.-P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102(9), 5297–5304.

    Article  CAS  Google Scholar 

  • Macdonald, J. A., & Rittmann, B. E. (1993). Performance standards for in situ bioremediation. Environmental Science & Technology, 27(10), 1974–1979.

    Article  CAS  Google Scholar 

  • Machado, M. D., Soares, E. V., & Soares, H. M. (2010). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 180(1–3), 347–353.

    Article  CAS  Google Scholar 

  • Mane, P., & Bhosle, A. (2012). Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. International Journal of Environmental Research, 6(2), 571–576.

    CAS  Google Scholar 

  • Manzoni, S., Taylor, P., Richter, A., Porporato, A., & Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196(1), 79–91.

    Article  CAS  Google Scholar 

  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375.

    Article  CAS  Google Scholar 

  • Morel, M., Meux, E., Mathieu, Y., Thuillier, A., Chibani, K., Harvengt, L., et al. (2013). Xenomic networks variability and adaptation traits in wood decaying fungi. Microbial Biotechnology, 6(3), 248–263.

    Article  Google Scholar 

  • Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014, 1.

    Article  Google Scholar 

  • Naitam, M. G., & Kaushik, R. (2021). Archaea: An agro-ecological perspective. Current Microbiology, 78, 1–12.

    Article  Google Scholar 

  • Naz, M., Iqbal, M. A., Islam, M. S., Hossain, A., Danish, S., Datta, R., et al. (2021). Environmental upheaval: Consequences and management strategies. In S. Fahad, O. Sönmez, S. Saud, D. Wang, C. Wu, M. Adnan, & A. Muhammad Arif (Eds.), Engineering tolerance in crop plants against abiotic stress (pp. 45–57). CRC Press.

    Chapter  Google Scholar 

  • Nealson, K. H., & Stahl, D. A. (2018). Microorganisms and biogeochemical cycles: What can we learn from layered microbial communities? Geomicrobiology, 35, 5–34.

    Google Scholar 

  • Nleya, Y., Simate, G. S., & Ndlovu, S. (2016). Sustainability assessment of the recovery and utilisation of acid from acid mine drainage. Journal of Cleaner Production, 113, 17–27.

    Article  CAS  Google Scholar 

  • Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environmental Pollution, 239, 788–802.

    Article  CAS  Google Scholar 

  • Ozimek, E., & Hanaka, A. (2021). Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture, 11(1), 7.

    Article  CAS  Google Scholar 

  • Pal, A. K., Singh, J., Soni, R., Tripathi, P., Kamle, M., Tripathi, V., & Kumar, P. (2020). The role of microorganism in bioremediation for sustainable environment management. In V. C. Pandey & V. Singh (Eds.), Bioremediation of pollutants (pp. 227–249). Elsevier.

    Chapter  Google Scholar 

  • Pandey, J., Chauhan, A., & Jain, R. K. (2009). Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiology Reviews, 33(2), 324–375.

    Article  CAS  Google Scholar 

  • Philp, J. C., Bamforth, S. M., Singleton, I., & Atlas, R. M. (2005). Environmental pollution and restoration: A role for bioremediation. In R. Atlas & J. Philp (Eds.), Bioremediation: Applied microbial solutions for real-world environmental cleanup (pp. 1–48). American Society for Microbiology.

    Google Scholar 

  • Phinikarides, A., Kindyni, N., Makrides, G., & Georghiou, G. E. (2014). Review of photovoltaic degradation rate methodologies. Renewable and Sustainable Energy Reviews, 40, 143–152.

    Article  Google Scholar 

  • Pletsch, M., de Araujo, B. S., & Charlwood, B. V. (1999). Novel biotechnological approaches in environmental remediation research. Biotechnology Advances, 17(8), 679–687.

    Article  CAS  Google Scholar 

  • Prasad, M., Garg, A., & Maheshwari, R. (2012). Decontamination of polluted water employing bioremediation processes: A review. International Journal of Life Sciences Biotechnology and Pharma Research, 1(3), 11–21.

    Google Scholar 

  • Priya, A., Pachaiappan, R., Kumar, P. S., Jalil, A., Vo, D.-V. N., & Rajendran, S. (2021). The war using microbes: A sustainable approach for wastewater management. Environmental Pollution, 116598, 116598.

    Article  Google Scholar 

  • Purohit, J., Chattopadhyay, A., Biswas, M. K., & Singh, N. K. (2018). Mycoremediation of agricultural soil: Bioprospection for sustainable development. In R. Prasad (Ed.), Mycoremediation and environmental sustainability (pp. 91–120). Springer.

    Chapter  Google Scholar 

  • Rahman, Z., & Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environmental Science and Pollution Research, 27(22), 27563–27581.

    Article  CAS  Google Scholar 

  • Ramos, J.-L., Sol Cuenca, M., Molina-Santiago, C., Segura, A., Duque, E., Gómez-García, M. R., et al. (2015). Mechanisms of solvent resistance mediated by interplay of cellular factors in pseudomonas putida. FEMS Microbiology Reviews, 39(4), 555–566.

    Article  Google Scholar 

  • Reddy, K. R., & Cameselle, C. (2009). Electrochemical remediation technologies for polluted soils, sediments and groundwater. John Wiley & Sons.

    Book  Google Scholar 

  • Reddy, C. A., & Mathew, Z. (2001). Bioremediation potential of white rot fungi. Paper presented at the British Mycological Society Symposium Series.

    Google Scholar 

  • Roane, T., Josephson, K., & Pepper, I. (2001). Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Applied and Environmental Microbiology, 67(7), 3208–3215.

    Article  CAS  Google Scholar 

  • Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: Indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics, 10(1), 1–23.

    Article  Google Scholar 

  • Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., et al. (2015). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology, 46, 377–387.

    Article  Google Scholar 

  • Sardrood, B. P., Goltapeh, E. M., & Varma, A. (2013). An introduction to bioremediation. In E. Goltapeh, Y. Danesh, & A. Varma (Eds.), Fungi as bioremediators (pp. 3–27). Springer.

    Chapter  Google Scholar 

  • Saxena, P., & Misra, N. (2010). Remediation of heavy metal contaminated tropical land. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (pp. 431–477). Springer.

    Chapter  Google Scholar 

  • Say, R., Yilmaz, N., & Denizli, A. (2003). Removal of heavy metal ions using the fungus Penicillium canescens. Adsorption Science & Technology, 21(7), 643–650.

    Article  CAS  Google Scholar 

  • Semple, K. T., Reid, B. J., & Fermor, T. (2001). Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution, 112(2), 269–283.

    Article  CAS  Google Scholar 

  • Shah, H., & Jain, S. (2020). Bioremediation: An approach for environmental pollutants detoxification. In B. K. Kashyap, M. K. Solanki, D. V. Kamboj, & A. K. Pandey (Eds.), Waste to energy: Prospects and applications (pp. 121–142). Springer.

    Chapter  Google Scholar 

  • Sharma, S. (2012). Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science ISSN, 2231, 4423.

    Google Scholar 

  • Singh, P., Ravindran, S., & Patil, Y. (2021). Biosurfactant enhanced sustainable remediation of petroleum contaminated soil. In H. Sarma & M. N. V. Prasad (Eds.), Biosurfactants for a sustainable future: Production and applications in the environment and biomedicine (pp. 119–138). Elsevier.

    Chapter  Google Scholar 

  • Si-Zhong, Y., Hui-Jun, J., Zhi, W., Rui-**a, H., Yan-Jun, J., **u-Mei, L., & Shao-Peng, Y. (2009). Bioremediation of oil spills in cold environments: A review. Pedosphere, 19(3), 371–381.

    Article  Google Scholar 

  • Taştan, B. E., Ertuğrul, S., & Dönmez, G. (2010). Effective bioremoval of reactive dye and heavy metals by aspergillus versicolor. Bioresource Technology, 101(3), 870–876.

    Article  Google Scholar 

  • Thakur, N., Kaur, S., Tomar, P., Thakur, S., & Yadav, A. N. (2020). Microbial biopesticides: Current status and advancement for sustainable agriculture and environment. In A. A. Rastegari, A. N. Yadav, & N. Yadav (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 243–282). Elsevier.

    Chapter  Google Scholar 

  • Thatoi, H., Behera, B. C., & Mishra, R. R. (2013). Ecological role and biotechnological potential of mangrove fungi: A review. Mycology, 4(1), 54–71.

    CAS  Google Scholar 

  • Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3(9), 711–721.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.

    Article  CAS  Google Scholar 

  • Verma, P., Yadav, A. N., Kumar, V., Singh, D. P., & Saxena, A. K. (2017). Beneficial plant-microbes interactions: Biodiversity of microbes from diverse extreme environments and its impact for crop improvement plant-microbe interactions in agro-ecological perspectives (pp. 543–580). Springer.

    Google Scholar 

  • Vijayaraghavan, K., & Yun, Y.-S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291.

    Article  CAS  Google Scholar 

  • Vullo, D. L., Ceretti, H. M., Daniel, M. A., Ramírez, S. A., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by pseudomonas veronii 2E. Bioresource Technology, 99(13), 5574–5581.

    Article  CAS  Google Scholar 

  • Xu, Y., & Lu, M. (2010). Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials, 183(1–3), 395–401.

    Article  CAS  Google Scholar 

  • Zhang, H., Yuan, X., **ong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125657.

    Article  CAS  Google Scholar 

  • Zhou, Z., Liu, Y., Zanaroli, G., Wang, Z., Xu, P., & Tang, H. (2019). Enhancing bioremediation potential of Pseudomonas putida by develo** its acid stress tolerance with glutamate decarboxylase dependent system and global regulator of extreme radiation resistance. Frontiers in Microbiology, 10, 2033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naz, M. et al. (2023). Major Groups of Microorganisms Employed in Bioremediation. In: Bhat, R.A., Butnariu, M., Dar, G.H., Hakeem, K.R. (eds) Microbial Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-18017-0_8

Download citation

Publish with us

Policies and ethics

Navigation