AttVAE: A Novel Anomaly Detection Framework for Multivariate Time Series

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2022)

Abstract

Anomaly detection plays a significant role in building a secure and reliable system. Multivariate time series contain important system information, such as system load and time delay. Temporal-dependent methods like RNNs are usually used for anomaly detection on time series. However, inner correlations of time series have shown great potentials in anomaly detection than temporal-dependent methods. In this paper, we propose a novel anomaly detection framework, namely AttVAE, which utilizes attention mechanisms on multivariate time series. This attention mechanism exploits the inner correlations of different time-series dimensions to discover the robust latent variables. Extensive experiments are conducted on two real-world datasets, and results show that AttVAE achieves the best F1-score at 0.79 and 0.97 compared with existing traditional and sophisticated methods. In addition, the missing and false alarm rate by AttVAE is reduced by \(20\%\) on average compared with the state-of-the-art models.

This work is supported by the Cooperation project between Chongqing Municipal undergraduate universities and institutes affiliated to CAS (HZ2021015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/waico/SKAB.

  2. 2.

    https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/.

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM computing surveys (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  2. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  3. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  4. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection. ar**v preprint ar**v:1607.00148 (2016)

  5. Nguyen, N., Quanz, B.: Temporal latent auto-encoder: a method for probabilistic multivariate time series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9117–9125 (2021)

    Google Scholar 

  6. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  7. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991–2005 (2018)

    Article  Google Scholar 

  9. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4027–4035 (2021)

    Google Scholar 

  10. Dai, L., et al.: SDFVAE: static and dynamic factorized VAE for anomaly detection of multivariate CDN KPIS. In: Proceedings of the Web Conference 2021, pp. 3076–3086 (2021)

    Google Scholar 

  11. Papadimitriou, S., Sun, J., Philip, S.Y.: Local correlation tracking in time series. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 456–465. IEEE (2006)

    Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. ar**v preprint ar**v:1312.6114 (2013)

  13. Basu, S., Meckesheimer, M.: Automatic outlier detection for time series: an application to sensor data. Knowl. Inf. Syst. 11(2), 137–154 (2007)

    Article  Google Scholar 

  14. Mehrang, S., Helander, E., Pavel, M., Chieh, A., Korhonen, I.: Outlier detection in weight time series of connected scales. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1489–1496. IEEE (2015)

    Google Scholar 

  15. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3, pp. 430–433. IEEE (2004)

    Google Scholar 

  16. Carter, K.M., Streilein, W.W.: Probabilistic reasoning for streaming anomaly detection. In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 377–380. IEEE (2012)

    Google Scholar 

  17. Zhang, Y., Hamm, N.A., Meratnia, N., Stein, A., Van De Voort, M., Havinga, P.J.: Statistics-based outlier detection for wireless sensor networks. Int. J. Geogr. Inf. Sci. 26(8), 1373–1392 (2012)

    Article  Google Scholar 

  18. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer Science & Business Media (2009)

    Google Scholar 

  19. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach. Learn. Res. 2(Dec), 139–154 (2001)

    Google Scholar 

  20. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in arbitrarily oriented subspaces. In: 2012 IEEE 12th International Conference on Data Mining, pp. 379–388. IEEE (2012)

    Google Scholar 

  21. Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly detection in streams with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1067–1075 (2017)

    Google Scholar 

  22. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1409–1416 (2019)

    Google Scholar 

  23. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. ar**v preprint ar**v:2001.04451 (2020)

  24. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  25. Chen, Z., Chen, D., Zhang, X., Yuan, Z., Cheng, X.: Learning graph structures with transformer for multivariate time series anomaly detection in IoT. IEEE Internet Things J. (2021)

    Google Scholar 

  26. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  27. Katser, I.D., Kozitsin, V.O.: Skoltech anomaly benchmark (SKAB). http://www.kaggle.com/dsv/1693952 (2020). https://doi.org/10.34740/KAGGLE/DSV/1693952

  28. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: International Conference on Critical Information Infrastructures Security, pp. 88–99. Springer (2016). https://doi.org/10.1007/978-3-319-71368-7_8

  29. Thiagarajan, J.J., Rajan, D., Katoch, S., Spanias, A.: DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Han, Y., An, W. (2022). AttVAE: A Novel Anomaly Detection Framework for Multivariate Time Series. In: Su, C., Sakurai, K., Liu, F. (eds) Science of Cyber Security. SciSec 2022. Lecture Notes in Computer Science, vol 13580. Springer, Cham. https://doi.org/10.1007/978-3-031-17551-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17551-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17550-3

  • Online ISBN: 978-3-031-17551-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation